首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In this report, a simple electrochemical biosensor has been developed for highly sensitive and specific detection of DNA based on hairpin assembly amplification. In the presence of target DNA, the biotin‐labelled hairpin H1 is opened by hybridizing with target DNA through complementary sequences. Then the opened hairpin H1 assembles with the hairpin H2 to displace the target DNA, generating H1‐H2 complex. The displaced target DNA could trigger the next cycle of hairpins assembly, resulting in the generation of numerous H1‐H2 complexes. Subsequently, the H1‐H2 complex hybridizes with the capture probe immobilized on the electrode. Finally, the streptavidin alkaline phosphatase (ST‐ALP) binds to biotin in the capture probe‐H1‐H2 complex and catalyzes the substrate α‐naphthol (α‐NP) to produce electrochemical signal. To make a more fascinating hairpin assembly amplification strategy in signal amplification, mismatched base sequences are designed in hairpin H2 to decrease non‐specific binding of the hairpin substrates. The developed biosensor achieves a sensitivity of 20 pM with a linear range from 25 pM to 25 nM, and shows high selectivity toward single‐base mismatch. Thus, the proposed electrochemical biosensor might have the potential for early clinical diagnosis and therapy.  相似文献   

4.
A competitor‐switched electrochemical sensor based on a generic displacement strategy was designed for DNA detection. In this strategy, an unmodified single‐stranded DNA (cDNA) completely complementary to the target DNA served as the molecular recognition element, while a hairpin DNA (hDNA) labeled with a ferrocene (Fc) and a thiol group at its terminals served as both the competitor element and the probe. This electrochemical sensor was fabricated by self‐assembling a dsDNA onto a gold electrode surface. The dsDNA was pre‐formed through the hybridization of Fc‐labeled hDNA and cDNA with their part complementary sequences. Initially, the labeled ferrocene in the dsDNA was far from surface of the electrode, the electrochemical sensor exhibited a "switch‐off" mode due to unfavorable electron transfer of Fc label. However, in the presence of target DNA, cDNA was released from hDNA by target DNA, the hairpin‐open hDNA restored its original hairpin structure and the ferrocene approached onto the electrode surface, thus the electrochemical sensor exhibited a "switch‐on" mode accompanying with a change in the current response. The experimental results showed that as low as 4.4×10−10 mol/L target DNA could be distinguishingly detected, and this method had obvious advantages such as facile operation, low cost and reagentless procedure.  相似文献   

5.
DNA nanostructured tiles play an active role in their own self‐assembly in the system described herein whereby they initiate a binding event that produces a cascading assembly process. We present DNA tiles that have a simple but powerful property: they respond to a binding event at one end of the tile by passing a signal across the tile to activate a binding site at the other end. This action allows sequential, virtually irreversible self‐assembly of tiles and enables local communication during the self‐assembly process. This localized signal‐passing mechanism provides a new element of control for autonomous self‐assembly of DNA nanostructures.  相似文献   

6.
7.
8.
9.
《Electroanalysis》2017,29(5):1243-1251
Here we report a new molecularly imprinted electrochemical sensor (MIECS) for the impedimetric enzyme‐free analysis of glucose. A computational modeling strategy was first utilized to screen promising functional monomers for imprinting assembly, and simulation data suggested that methacrylic acid (MAA) exhibited a preferable capability to recognize the target molecule compared to other common monomers. Then the MIECS was prepared via introducing MAA‐based recognition sites onto a porous Ni foam with large surface. The fabricated sensor was subtly characterized by Raman spectroscopy, scanning electron microscopy, and cyclic voltammetry, and an impedimetric method was selected to detect the glucose target in a basic medium. Experimental results demonstrated that the proposed MIECS could selectively recognize glucose against coexisting species, with good linear responses of the charge transfer resistance upon the target concentration in the scope of 10∼55 mM. These results indicate its potential applications in the recognization and detection of glucose in complex matrices.  相似文献   

10.
In this paper, a novel strategy of electrochemical amplified detection of thrombin based on G‐quadruplex‐linked supersandwich structure was described. In the presence of K+ and hemin, the original hairpin DNA sequence activated an autonomous cross‐opening process to build up hemin/G‐quadruplex structure and can hybridize to form supersandwich structure containing multiple signal labels. With the addition of thrombin, it conjugated with its aptamer, leading to a remarkably descended signal. The supersandwich‐amplified electrochemical sensor system was highly sensitive in the concentration range from 10?6 to 10?10 M with a detection limit of 10 pM and also demonstrated excellent selectivity. The amplifying supersandwich structure with multiple labels can be implemented as a versatile sensing platform for analyzing other DNA in the presence of the appropriate probe.  相似文献   

11.
《Electroanalysis》2006,18(21):2107-2114
Gold electrodes were modified with submonolayers of mercaptoacetic acid (RSH) and further reacted with poly(amidoamine) (PAMAM) dendrimers (generation 4.0) to obtain thin films, on which DNA probe was later immobilized to afford a stable recognition layers. The characterization of the PAMAM/RSH‐modified electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance measurement. Differential pulse voltammogram (DPV) measurement was used to monitor DNA hybridization with daunomycin (DNR) as indicator. Experiments carried out with these novel materials not only showed an improved DNA attachment quantity on the dendrimers‐modified electrodes compared to DNA sensors with oligonucleotides directly immobilized on Au electrodes, but also exhibited a high selectivity, sensitivity and stability for the measurement of DNA hybridization.  相似文献   

12.
《Electroanalysis》2006,18(4):399-404
A simple and rapid approach for detecting apurinic (AP) sites in DNA, based on direct stripping chronopotentiometric measurements of the adenine and guanine nucleobases at a graphite electrode is described. Tetrahydrofuranyl residues, lacking a nucleobase moiety, were utilized for designing the AP sites and were incorporated in 19‐mer oligonucleotides. The change of adenine‐to‐guanine response ratio (A/G) in one‐, two‐ or three‐substituted adenosine residues for stable analogs of AP sites was exploited for electrochemical measurements of the adenine loss. The resulting A/G response ratio decreases linearly upon increasing the number of AP sites in the oligonucleotides; the values of A/G electrochemical signals were slightly enhanced when compared to the actual purine content. HPLC analysis of the released nucleobases confirmed that the sulfuric acid‐induced oligonucleotide cleavage provides complete apurination and dissolution of the released nucleobases in aqueous solution. Additional experiments with mixtures of free nucleobases and purine nucleosides reveal that the larger A/G ratio observed in the electrochemical analysis of AP‐site‐containing oligomers is attributed to the influence of the acid and/or thermal decomposition products (particularly the sugar fragments). This study represents the first step in developing a simple and direct electrochemical assay of AP sites in single‐stranded DNA.  相似文献   

13.
Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)‐based covalent organic framework ( EB‐TFP ) that self‐exfoliates in water resulting in 2D ionic covalent organic nanosheets ( EB‐TFP‐iCONs ) for the selective detection of double‐stranded DNA (dsDNA). In an aqueous medium, the self‐exfoliated EB‐TFP‐iCONs reassemble in the presence of dsDNA resulting in hybrid EB‐TFP‐iCONs‐DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady‐state and time‐resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single‐stranded DNA (ssDNA), which allowed us to use the EB‐TFP‐iCONs as a 2D fluorescent platform for the label‐free detection of complementary DNA strands.  相似文献   

14.
15.
The design of photoactive functionalized electrodes for the sensitive transduction of double‐stranded DNA hybridization is reported. Multifunctional complex [Ru(bpy‐pyrrole)2(dppn)]2+ (bpy‐pyrrole=4‐methyl‐4′‐butylpyrrole‐2,2′‐bipyridine, dppn=benzo[i]dipyrido[3,2‐a:2′,3′‐c]phenazine) exhibiting photosensitive, DNA‐intercalating, and electropolymerizable properties was synthesized and characterized. The pyrrole groups undergo oxidative electropolymerization on planar electrodes forming a metallopolymer layer on the electrode. Thanks to the photoelectrochemical and intercalating properties of the immobilized RuII complex, the binding of a double‐stranded HIV DNA target was photoelectrochemically detected on planar electrodes. Photocurrent generation through visible irradiation was correlated to the interaction between double‐stranded DNA and the metallointercalator polymer. These interactions were well fitted by using a Langmuir isotherm, which allowed a dissociation constant of 2×106 L mol?1 to be estimated. The low detection limit of 1 fmol L?1 and sensitivity of 0.01 units per decade demonstrate excellent suitability of these modified electrodes for detection of duplex DNA.  相似文献   

16.
DNA在碳纳米管表面的固定、表征及损伤的电化学检测   总被引:1,自引:0,他引:1  
将DNA通过PDDA [poly(dimethyldiallylammonium chloride)]固定在单壁碳纳米管(CNT)表面, 形成DNA-PDDA-CNT纳米复合体, 用AFM、UV-Vis、Raman光谱及交流阻抗对其进行了表征. 用伏安法研究了1-苯基偶氮-2-萘酚(PN)与固定在CNT表面的DNA的相互作用, 结果表明PN与DNA的作用方式为嵌入作用;并且, PN能用作电化学检测DNA化学损伤的探针分子. 本文电化学检测DNA损伤的优点在于PN的氧化还原式量电位E0'≈0.1 V (vs. SCE, pH 5.5), 能有效降低其它电活性物质对DNA损伤电化学检测的干扰.  相似文献   

17.
18.
The positioning of enzymes on DNA nanostructures for the study of spatial effects in interacting biomolecular assemblies requires chemically mild immobilization procedures as well as efficient means for separating unbound proteins from the assembled constructs. We herein report the exploitation of free‐flow electrophoresis (FFE) for the purification of DNA origami structures decorated with biotechnologically relevant recombinant enzymes: the S‐selective NADP+/NADPH‐dependent oxidoreductase Gre2 from S. Cerevisiae and the reductase domain of the monooxygenase P450 BM3 from B. megaterium. The enzymes were fused with orthogonal tags to facilitate site‐selective immobilization. FFE purification yielded enzyme–origami constructs whose specific activity was quantitatively analyzed. All origami‐tethered enzymes were significantly more active than the free enzymes, thereby suggesting a protective influence of the large, highly charged DNA nanostructure on the stability of the proteins.  相似文献   

19.
Electrochemically reduced glassy carbon (r‐GC) showed a superior electrochemical sensing performance, compared to oxidized GC (ox‐GC) and untreated GC for the oxidation of 4 DNA bases and neurotransmitters (epinephrine, norepinephrine and serotonin). r‐GC exhibited not only the largest current intensities of all redox biomolecules, but also displayed an excellent selectivity in detecting coexisting redox biomolecules. The enhanced performance of r‐GC was attributed to the improved surface cleanliness of electrode and its catalytic surface functional groups. The results presented herein imply that simple electrochemical treatments are a viable method to produce sensitive and selective electrodes for label‐free biosensing.  相似文献   

20.
本文介绍了近年来纳米材料电化学与生物传感器在有机微污染物检测中的研究现状,分析了这些传感器中纳米材料修饰电极的特点,重点阐述了纳米材料在有机微污染物检测中的重要作用,列举了一些纳米材料电化学与生物传感器在有机微污染物检测中的应用。最后对纳米材料电化学与生物传感器用于有机微污染物的检测研究进行了简要评述和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号