首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A novel visible‐light‐driven AgBr‐Ag‐BiOBr photocatalyst was synthesized by a facile hydrothermal method. Taking advantage of both p‐n heterojunctions and localized surface plasmon resonance, the p‐metal‐n structure exhibited a superior performance concerning degradation of methyl orange under visible‐light irradiation (λ>420 nm). A possible photodegradation mechanism in the presence of AgBr‐Ag‐BiOBr composites was proposed, and the radical species involved in the degradation reaction were investigated. HO2?/?O2? played the same important role as ?OH in the AgBr‐Ag‐BiOBr photocatalytic system, and both the electron and hole were fully used for degradation of organic pollutants. A dual role of metallic Ag in the photocatalysis was proposed, one being surface plasmon resonance and the other being an electron‐hole bridge. Due to the distinctive p‐metal‐n structure, the visible‐light absorption, the separation of photogenerated carriers and the photocatalysis efficiency were greatly enhanced.  相似文献   

2.
Graphene oxide (GO) and silver nanoparticles (Ag NPs) sequentially decorated nitrogen‐doped titania nanotube array (N‐TiO2 NTA) had been designed as visible‐light‐driven self‐cleaning surface‐enhanced Raman scattering (SERS) substrate for a recyclable SERS detection application. N‐TiO2 NTA was fabricated by anodic oxidation and then doping nitrogen treatment in ammonia atmosphere, acting as a visible‐light‐driven photocatalyst and supporting substrate. Ag/GO/N‐TiO2 NTA was prepared by decorating GO monolayer through an impregnation process and then depositing Ag NPs through a polyol process on the surface of N‐TiO2 NTA, acting as the collection of organic molecule and Raman enhancement. The SERS activity of Ag/GO/N‐TiO2 NTA was evaluated using methyl blue as an organic probe molecule, revealing the analytical enhancement factor of 4.54 × 104. Ag/GO/N‐TiO2 NTA was applied as active SERS substrate to determine a low‐affinity organic pollutant of bisphenol A, revealing the detection limit of as low as 5 × 10?7 m . Ag/GO/N‐TiO2 NTA could also achieve self‐cleaning function for a recycling utilization through visible‐light‐driven photocatalytic degradation of the adsorbed organic molecules. Ag/GO/N‐TiO2 NTA has been successfully reused for five times without an obvious decay in accuracy and sensitivity for organic molecule detection. The unique properties of this SERS substrate enable it to have a promising application for the sensitive and recyclable SERS detection of low‐affinity organic molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The visible‐light‐accelerated oxo‐azidation of vinyl arenes with trimethylsilylazide and molecular oxygen as stoichiometric oxidant was achieved. In contrast to photocatalysts based on iridium, ruthenium, or organic dyes, [Cu(dap)2]Cl or [Cu(dap)Cl2] were found to be unique for this transformation, which is attributed to their ability to interact with the substrates through ligand exchange and rebound mechanisms. CuII is proposed as the catalytically active species, which upon coordinating azide will undergo light‐accelerated homolysis to form CuI and azide radicals. This activation principle (CuII‐X→CuI+X.) opens up new avenues for copper‐based photocatalysis.  相似文献   

4.
Visible‐light‐responsive reversible color‐switching systems are attractive to many applications because visible light has superior penetration and causes far less damage to organic molecules than UV. Herein, we report that self‐doping of SnO2−x nanocrystals with Sn2+ red‐shifts their absorption to the visible region and simultaneously produces oxygen vacancies, which can effectively scavenge photogenerated holes and thus enable the color switching of redox dyes using visible light. Wavelength‐selective switching can also be achieved by coupling the photocatalytic activity of the SnO2−x NCs with the color‐switching kinetics of different redox dyes. The fast light response enables the further fabrication of a solid film that can be repeatedly written on using a visible laser pen or projection printing through a photomask. This discovery represents a big step forward towards practical applications, especially in areas in which safety issues and photodamage by UV light are of concern.  相似文献   

5.
Recently, the emergence of photoactive metal–organic frameworks (MOFs) has given great prospects for their applications as photocatalytic materials in visible‐light‐driven hydrogen evolution. Herein, a highly photoactive visible‐light‐driven material for H2 evolution was prepared by introducing methylthio terephthalate into a MOF lattice via solvent‐assisted ligand‐exchange method. Accordingly, a first methylthio‐functionalized porous MOF decorated with Pt co‐catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield (8.90 %) at 420 nm by use sacrificial triethanolamine. This hybrid material exhibited perfect H2 production rate as high as 3814.0 μmol g?1 h?1, which even is one order of magnitude higher than that of the state‐of‐the‐art Pt/MOF photocatalyst derived from aminoterephthalate.  相似文献   

6.
A new photoacid that reversibly changes from a weak to a strong acid under visible light was designed and synthesized. Irradiation generated a metastable state with high C?H acidity due to high stability of a trifluoromethyl‐phenyl‐tricyano‐furan (CF3PhTCF) carbanion. This long‐lived metastable state allows a large proton concentration to be reversibly produced with moderate light intensity. Reversible pH change of about one unit was demonstrated by using a 0.1 mM solution of the photoacid in 95 % ethanol. The quantum yield was calculated to be as high as 0.24. Kinetics of the reverse process can be fitted well to a second‐order‐rate equation with k=9.78×102 M ?1 s?1. Response to visible light, high quantum yield, good reversibility, large photoinduced proton concentration under moderate light intensity, and good compatibility with organic media make this photoacid a promising material for macroscopic control of proton‐transfer processes in organic systems.  相似文献   

7.
Two PtIV and two PtII complexes containing a 2,2′‐bipyridine ligand were treated with a short DNA oligonucleotide under light irradiation at 37 °C or in the dark at 37 and 50 °C. Photolysis and thermolysis of the PtIV complexes led to spontaneous reduction of the PtIV to the corresponding PtII complexes and to binding of PtII 2,2′‐bipyridine complexes to N7 of guanine. When the reduction product was [Pt(bpy)Cl2], formation of bis‐oligonucleotide adducts was observed, whereas [Pt(bpy)(MeNH2)Cl]+ gave monoadducts, with chloride ligands substituted in both cases. Neither in the dark nor under light irradiation was the reductive elimination process of these PtIV complexes accompanied by oxidative DNA damage. This work raises the question of the stability of photoactivatable PtIV complexes toward moderate heating conditions.  相似文献   

8.
Recently, low‐dimensional organic‐inorganic hybrid metal halide perovskites acting as single‐component white‐light emitting materials have attracted extensive attention, but most studies concentrate on hybrid lead perovskites. Herein, we present two isomorphic zero‐dimensional (0D) hybrid cadmium perovskites, (HMEDA)CdX4 (HMEDA=hexamethylenediamine, X=Cl ( 1 ), Br ( 2 )), which contain isolated [CdX4]2? anions separated by [HMEDA]2+ cations. Under UV light excitation, both compounds display broadband bluish white‐light emission (515 nm for 1 and 445 nm for 2 ) covering the entire visible light spectrum with sufficient photophysical stabilities. Remarkably, compound 2 shows a high color rendering index (CRI) of 83 enabling it as a promising candidate for single‐component WLED applications. Based on the temperature‐dependent, powder‐dependent and time‐resolved PL measurements as well as other detailed studies, the broadband light emissions are attributed to self‐trapped excitons stemming from the strong electron‐phonon coupling.  相似文献   

9.
The complex [VO(MPO)2] (MPO = deprotonated 2‐mercaptopyridine N‐oxide) was synthesized and characterized by IR spectroscopy. Its electrochemical behaviour was investigated by cyclic voltammetry in different organic solvents. The VIV/VV and VIV/VIII couples could be identified. The nature of the electroactive species is strongly dependent on the solvent. The results are discussed in terms of a reaction mechanism describing the characteristics of the electron transfer processes and the involved chemical reactions, and the stability of the complex in each solvent was also determined. The electronic spectra of the investigated solutions gave additional support to the proposed mechanisms.  相似文献   

10.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

11.
An organic‐based photocatalysis system for water oxidation, with visible‐light harvesting antennae, was constructed using periodic mesoporous organosilica (PMO). PMO containing acridone groups in the framework (Acd‐PMO), a visible‐light harvesting antenna, was supported with [RuII(bpy)32+] complex (bpy=2,2′‐bipyridyl) coupled with iridium oxide (IrOx) particles in the mesochannels as photosensitizer and catalyst, respectively. Acd‐PMO absorbed visible light and funneled the light energy into the Ru complex in the mesochannels through excitation energy transfer. The excited state of Ru complex is oxidatively quenched by a sacrificial oxidant (Na2S2O8) to form Ru3+ species. The Ru3+ species extracts an electron from IrOx to oxidize water for oxygen production. The reaction quantum yield was 0.34 %, which was improved to 0.68 or 1.2 % by the modifications of PMO. A unique sequence of reactions mimicking natural photosystem II, 1) light‐harvesting, 2) charge separation, and 3) oxygen generation, were realized for the first time by using the light‐harvesting PMO.  相似文献   

12.
Proton transfer reactions are of central importance to a wide variety of biochemical processes, though determining proton location and monitoring proton transfers in biological systems is often extremely challenging. Herein, we use two‐color valence‐to‐core X‐ray emission spectroscopy (VtC XES) to identify protonation events across three oxidation states of the O2‐activating, radical‐initiating manganese–iron heterodinuclear cofactor in a class I‐c ribonucleotide reductase. This is the first application of VtC XES to an enzyme intermediate and the first simultaneous measurement of two‐color VtC spectra. In contrast to more conventional methods of assessing protonation state, VtC XES is a more direct probe applicable to a wide range of metalloenzyme systems. These data, coupled to insight provided by DFT calculations, allow the inorganic cores of the MnIVFeIV and MnIVFeIII states of the enzyme to be assigned as MnIV(μ‐O)2FeIV and MnIV(μ‐O)(μ‐OH)FeIII, respectively.  相似文献   

13.
Reduction of uranyl(VI) to UV and to UIV is important in uranium environmental migration and remediation processes. The anaerobic reduction of a uranyl UVI complex supported by a picolinate ligand in both organic and aqueous media is presented. The [UVIO2(dpaea)] complex is readily converted into the cis‐boroxide UIV species via diborane‐mediated reductive functionalization in organic media. Remarkably, in aqueous media the uranyl(VI) complex is rapidly converted, by Na2S2O4, a reductant relevant for chemical remediation processes, into the stable uranyl(V) analogue, which is then slowly reduced to yield a water‐insoluble trinuclear UIV oxo‐hydroxo cluster. This report provides the first example of direct conversion of a uranyl(VI) compound into a well‐defined molecular UIV species in aqueous conditions.  相似文献   

14.
The study of palladium(IV) species has great implications for PdII/PdIV‐mediated catalysis. However, most of the PdIV complexes rapidly decompose under ambient conditions, which makes the isolation, characterization and further reactivity study very challenging. The reported ancillary ligand platforms to stabilize PdIV species are dominated by chelating N‐donors such as bipyridines. In this work, we present two PdIV complexes with scarcely used C‐donors as the supporting platform. The anionic aryl donor and MIC (MIC=mesoionic carbene) are combined in a [CC′C]‐type pincer framework to access a series of ambient‐stable PdIV tris(halido) complexes. Their synthesis, solid‐state structures, stability, and reactivity are presented. To the best of our knowledge, the work presented herein reports the first isolated PdIV–MIC as well as the first PdIV carbene‐based aryl pincer.  相似文献   

15.
A visible light driven, direct Z‐scheme reduced graphene oxide–Ag3PO4 (RGO–Ag3PO4) heterostructure was synthesized by means of a simple one‐pot photoreduction route by varying the amount of RGO under visible light illumination. The reduction of graphene oxide (GO) and growth of Ag3PO4 took place simultaneously. The effect of the amount of RGO on the textural properties and photocatalytic activity of the heterostructure was investigated under visible light illumination. Furthermore, total organic carbon (TOC) analysis confirmed 97.1 % mineralization of organic dyes over RGO–Ag3PO4 in just five minutes under visible‐light illumination. The use of different quenchers in the photomineralization suggested the presence of hydroxyl radicals ( . OH), superoxide radicals ( . O2?), and holes (h+), which play a significant role in the mineralization of organic dyes. In addition to that, clean hydrogen fuel generation was also observed with excellent reusability. The 4 RGO–Ag3PO4 heterostructure has a high H2 evolution rate of 3690 μmol h?1 g?1, which is 6.15 times higher than that of RGO.  相似文献   

16.
A huge increase in the magnetization of two coordination chains based on tetravalent octacyanidometalates (WIV and MoIV) is observed on irradiation with 436 nm light, while no such behavior is observed for the NbIV analogue. A photomagnetic response based solely on [WIV(CN)8]4− is demonstrated for the first time. The observed behavior is attributed to the light‐induced excited spin state trapping (LIESST) effect at the octacyanidometalate, and to the resulting magnetic exchange ON/OFF photoswitching between the MnII center and the photoinduced high‐spin (S =1) WIV or MoIV centers.  相似文献   

17.
A near‐stoichiometric amount of O2 was evolved as observed in the visible‐light irradiation of an aqueous buffer (pH 8) containing [RuII(2,2′‐bipyridine)3] as a photosensitizer, Na2S2O8 as a sacrificial electron acceptor, and a heteropolynuclear cyanide complex as a water‐oxidation catalyst. The heteropolynuclear cyanide complexes exhibited higher catalytic activity than a polynuclear cyanide complex containing only CoIII or PtIV ions as C‐bound metal ions. The origin of the synergistic effect between Co and Pt ions is discussed in relation to electronic and local atomic structures of the complexes.  相似文献   

18.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

19.
Anthraquinone (AQ) redox mediators are introduced to metal‐free organic dye sensitized photo‐electrochemical cells (DSPECs) for the generation of H2O2. Instead of directly reducing O2 to produce H2O2, visible‐light‐driven AQ reduction occurs in the DSPEC and the following autooxidation with O2 allows H2O2 accumulation and AQ regeneration. In an aqueous electrolyte, under 1 sun conditions, a water‐soluble AQ salt is employed with the highest photocurrent of up to 0.4 mA cm?2 and near‐quantitative faradaic efficiency for producing H2O2. In a non‐aqueous electrolyte, under 1 sun illumination, an organic‐soluble AQ is applied and the photocurrent reaches 1.8 mA cm?2 with faradaic efficiency up to 95 % for H2O2 production. This AQ‐relay DSPEC exhibits the highest photocurrent so far in non‐aqueous electrolytes for H2O2 production and excellent acid stability in aqueous electrolytes, thus providing a practical and efficient strategy for visible‐light‐driven H2O2 production.  相似文献   

20.
Contamination of industrial sewage by organic dye pollutants is one of the most common challenges to the daily life. Decontamination can be achieved by adsorption and photodegradation of the pollutants. Herein, an effective visible light‐driven photocatalyst of polyoxometalate encapsulated in metal–organic gel was presented. The resulting composite was named PMA@ MOG‐Cr [PMA= H3PMo12O40, MOG= metal‐organic gel]. Photodegradation of dye pollutants with PMA@ MOG‐Cr were tested. The introduction of Phosphomolybdic Acid significantly enhanced the light‐absorption properties of MOG‐Cr. The PMA@MOG‐Cr showed an excellent photodegradation efficiency of MB, RhB and MO as high as 99% and 97% in 60 min and 91% in 120 min of visible‐light irradiation with only 10 mg photocatalyst, which was the highest among the tested samples MOG‐Cr, PMA@ MOG‐Cr and Degussa P‐25. The mechanism of the photodegradation of dye pollutants with H2O2 over PMA@MOG‐Cr under the visible light was further illustrated. The introduction of PMA promotes effective separation of electron–hole pair by trapping and transferring photogenerated electron. Thus, the two components act in synergy to result in much improved adsorption of certain common organic dyes as well as enhanced oxidative degradation. This work provides a new approach to design MOG encapsulated Polyoxometalate for visible light‐induced photodegradation of organic contaminants for the environmental remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号