首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytarabine (Cyt) encapsulated calcium carbonate (CaCO3) nanospheres were facilely synthesized through a simple co-precipitation method, and the Cyt encapsulated CaCO3 nanospheres (CaCO3/Cyt) were modified by polyacrylic acid (PAA) hydrogels through in situ polymerization of acrylic acid (AA) monomer on the surface of the CaCO3/Cyt. Successful preparation of the Cyt loaded CaCO3/PAA hydrogels were confirmed by the characterization of SEM, TEM and FT-IR. Premature release of Cyt in acidic medium (pH = 1.2) could be effectively circumvented by the introduction of the PAA hydrogels. More importantly, pH-responsive delivery of Cyt from the as-prepared CaCO3/PAA hydrogels could be achieved due to the pH-sensitivity of the PAA. Although the highest swelling ratio of PAA was obtained at pH 7.3 (27.7), the highest cumulative release of Cyt from the carrier was achieved at pH 5.3 (86.75%), which might be attributed to the high stability of CaCO3 at pH 7.3. That is to say, the highest cumulative release of Cyt at pH 5.3 was a compromise by considering the relatively high swelling ratio of PAA and the relatively low stability of CaCO3.  相似文献   

2.
The effective escape of nanocarriers from endosomal compartments of the cell remains a major hurdle in nanomedicine. The endosomal escape of pH‐responsive, self‐assembled, dual component particles based on poly[2‐(diethylamino)ethyl methacrylate)(PDEAEMA) and poly(ethylene glycol)‐b‐poly[2‐(diethylamino)ethyl methacrylate) (PEG‐b‐PDEAEMA) has been recently reported. Herein, we report that polymer molecular weight (M n) can be used to tune endosomal escape of nanoparticle delivery systems. PDEAEMA of M n 7 kDa, 27 kDa, 56 kDa and 106 kDa was synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization and co‐assembled with PEG‐b‐PDEAEMA (16 kDa) via nanoprecipitation. All particles had similar size, displayed pH‐responsive behaviour, and low toxicity regardless of molecular weight. Ovalbumin was loaded in the particles to demonstrate loading and release capabilities and as a marker to study internalization and endosomal escape. Association and endosomal escape was found to depend on molecular weight, with enhanced escape observed for high M n PDEAEMA: 42% of cells with particle induced endosomal escape for 106 kDa nanoparticles, compared to minimal escape for 7 kDa particles. The results show that a simple variation in molecular weight can enhance the endosomal escape of polymeric carriers, and thus improve their effectiveness for intracellular delivery of therapeutics.

  相似文献   


3.
Biocompatible lipo‐histidine hybrid materials conjugated with IR820 dye show pH‐sensitivity, efficient intracellular delivery of doxorubicin (Dox), and intrinsic targetability to cancer cells. These new materials form highly uniform Dox‐loaded nanosized vesicles via a self‐assembly process showing good stability under physiological conditions. The Dox‐loaded micelles are effective for suppressing MCF‐7 tumors, as demonstrated in vitro and in vivo. The combined mechanisms of the EPR effect, active internalization, endosomal‐triggered release, and drug escape from endosomes, and a long blood circulation time, clearly prove that the IR820 lipopeptide DDS is a safe theranostic agent for imaging‐guided cancer therapy.

  相似文献   


4.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   

5.
The synthesis, micellar aggregation, and pH‐triggered intracellular drug delivery ability of an amphiphilic statistical copolymer (P2) are studied. Two methacrylate derivatives, one containing a hydrophilic pendant and the other containing a hydrophobic pendant chain, are copolymerized to produce P2. The hydrophobic pendant chain is linked to the polymer backbone by a β‐thiopropionate linkage, known to undergo slow hydrolysis at mild acidic pH. P2 forms a multimicellar cluster in water with a critical aggregation concentration of 0.02 mg mL−1 and encapsulates a hydrophobic guest such as pyrene, Nile red, or the anti‐cancer drug doxorubicin (Dox). Sustained release of the entrapped Dox (80% after 100 h) is noticed at pH 5.2, while release is significantly slower (35% after 100 h) at pH 7.4. Acidic hydrolysis of the β‐thiopropionate linkage leading to the reduction of the hydrophobicity is established as the cause for micellar disassembly and triggered drug release. Cell‐culture studies with the human breast cancer cell line, MCF‐7, reveal biocompatibility of P2 (below 150 μg mL−1). It is further tested for intracellular delivery of Dox. MCF‐7 cells remain healthy at pH 7.4 but become unhealthy at pH 5.2 when treated with a Dox‐loaded P2 micelles.

  相似文献   


6.
A simple process is developed to fabricate metallo‐supramolecular nanogels (MSNs) by the metallo‐supramolecular‐coordinated interaction between histidine and iron‐meso‐tetraphenylporphin. MSNs are composed of histidine‐modified dextran (DH) and iron‐meso‐tetraphenylporphin (Fe–Por) and exhibit excellent biocompatibility and stability. MSNs show pH responsiveness in the intracellular mildly acidic environment, which has great potential for acid‐triggered drug release delivery. In vitro drug release profiles demonstrate that the pH‐dependent disassembly of MSNs to histidine and Por results in a quicker release rate of loaded‐DOX at pH 5.3, while at pH 7.4 MSNs could hinder the release of loaded‐DOX due to the enhanced stability of MSNs.

  相似文献   


7.
We report a new pH and enzyme dual responsive biodegradable polymer nanocarrier to deliver multiple anticancer drugs at the intracellular compartment in cancer cells. Natural l ‐aspartic acid was converted into multifunctional monomer and polymerized to yield new classes of biodegradable aliphatic polyester in‐build with pH responsiveness. The transformation of side chain BOC urethanes into cationic in the acidic endosomal environment disassembled the polymers nanoparticles (pH trigger‐1). The biodegradation of aliphatic polyester backbone by esterase enzyme ruptured the nanoassemblies and released the drugs in the cytoplasm (trigger‐2). The polymer scaffolds were capable of delivering multiple drugs such as doxorubicin, topotecan, and curcumin (CUR). The cytotoxicity of the nascent and drug‐loaded nanoparticles were tested in cervical (HeLa) and breast (MCF‐7) cancer cell lines. The nascent polymer nanoscaffolds were found to be nontoxic to cells whereas their drug‐loaded nanoparticles exhibited excellent killing. Confocal microscopic images revealed that the drug‐loaded polymer nanoparticles were taken up by the cells and the dual degradation process delivered the drugs to nucleus and established the proof‐of‐concept. The present investigation opens up new platform for l ‐amino acid based polyester scaffolds, for the first time, in the intracellular drug delivery in cancer treatment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3279–3293  相似文献   

8.
Novel pH and reduction dual‐sensitive biodegradable polymeric micelles for efficient intracellular delivery of anticancer drugs were prepared based on a block copolymer of methyloxy‐poly(ethylene glycol)‐b‐poly[(benzyl‐l ‐aspartate)‐co‐(N‐(3‐aminopropyl) imidazole‐l ‐aspartamide)] [mPEG‐SS‐P(BLA‐co‐APILA), MPBA] synthesized by a combination of ring‐opening polymerization and side‐chain reaction. The pH/reduction‐responsive behavior of MPBA was observed by both dynamic light scattering and UV–vis experiments. The polymeric micelles and DOX‐loaded micelles could be prepared simply by adjusting the pH of the polymer solution without the use of any organic solvents. The drug release study indicated that the DOX‐loaded micelles showed retarded drug release in phosphate‐buffered saline at pH 7.4 and a rapid release after exposure to weakly acidic or reductive environment. The empty micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. Confocal microscopy observation demonstrated that the DOX‐loaded MPBA micelles can be quickly internalized into the cells, and effectively deliver the drugs into nuclei. Thus, the pH and reduction dual‐responsive MPBA polymeric micelles are an attractive platform to achieve the fast intracellular release of anticancer drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1771–1780  相似文献   

9.
Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin‐loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50=155 nm ). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin‐loaded AuNCs is only 40 % (IC50=4500 nm ). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490–515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10–13. The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging.  相似文献   

10.
A novel amphiphilic four‐armed [poly(ε‐benzyloxycarbonyl‐L ‐lysine)]2‐block‐poly(ethylene glycol)‐block‐[poly(ε‐benzyloxycarbonyl‐L ‐lysine)]2 hybrid copolymer has been prepared. The cytotoxicity study shows that the copolymer has good biocompatibility with no obvious inhibition effect on cell growth. The amphiphilic copolymers could self‐assemble to form vesicles in aqueous solution. DOX · HCl, as a hydrophilic drug, can be loaded into the vesicles, and then successfully internalized by human breast cancer MCF‐7 cells. Importantly, the DOX‐loaded vesicles show a greatly improved drug release behavior with a zero‐order release at the initial stage, suggesting a great potential as the carrier of hydrophilic drugs for controlled drug delivery.

  相似文献   


11.
Hollow multilayer microcapsules made of aliphatic poly(urethane‐amine) (PUA) and sodium poly(styrene sulfonate) (PSS), templated on PSS‐doped CaCO3 particles, are prepared for pH‐/thermally responsive drug delivery. The electrostatic interaction and hydrogen bonding under weak‐acid conditions between aliphatic PUA and PSS contribute to the formation of multilayer microcapsules. Scanning electron microscopy (SEM) results demonstrate an obvious variation of the hollow multilayer microcapsules in response to changes in temperature and pH value. Drug‐release behaviors using DOX as a model drug demonstrate that the drug release increases on decreasing the pH value because of the interaction weakness between aliphatic PUA and PSS in acidic conditions. Moreover, the drug release is higher at 55 °C than that at 37 °C for the sake of the shrinkage of aliphatic PUA above its lower critical solution temperature (LCST).

  相似文献   


12.
Well‐defined amphiphilic linear‐dendritic prodrugs (MPEG‐b‐PAMAM‐DOX) are synthesized by conjugating doxorubicin (DOX), to MPEG‐b‐PAMAM through the acid‐labile hydrazone bond. The amphiphilic prodrugs form self‐assembled nanoparticles in deionized water and encapsulate the hydrophobic anticancer drug 10‐hydroxycamptothecin (HCPT) with a high drug loading efficiency. Studies on drug release and cellular uptake of the co‐delivery system reveal that both drugs are released in a pH‐dependent manner and effectively taken up by MCF‐7 cells. In vitro methyl thiazolyl tetrazolium (MTT) assays and drug‐induced apoptosis tests demonstrate the HCPT‐loaded nanoparticles suppress cancer cell growth more efficiently than the MPEG‐b‐PAMAM‐DOX prodrugs, free HCPT, and physical mixtures of MPEG‐b‐PAMAM‐DOX and HCPT at equivalent DOX or HCPT doses.

  相似文献   


13.
A series of pH‐triggered charge‐reversal polyurethane copolymers (PS‐PUs) containing methoxyl‐poly(ethylene glycol) (mPEG), carboxylic acid groups, and piperazine groups is presented in this work. The obtained PS‐PUs copolymers can form into stable micelles at pH 7.4, which response to a narrow pH change (5.5–7.5) and show a tunable pH‐triggered charge‐reversal property. Doxorubicin (DOX) is encapsulated into the PS‐PU micelles as a model drug. The drug release of DOX‐loaded PS‐PU micelles shows an obviously stepped‐up with reducing the pH. Meanwhile, it is found that the charge‐reversal property can improve the cellular uptake behavior and intracellular drug release in both HeLa cells and MCF‐7 cells. Additionally, the time‐dependent cytotoxicity of the DOX‐loaded PS‐PU micelles is confirmed by MTT assay. Attributed to the tunable charge‐reversal property through changing the molar ratio of piperazine/carboxyl, the PS‐PU micelles will be a potential candidate as an intelligent drug delivery system in future studies.

  相似文献   


14.
Calcium phosphate‐reinforced photosensitizer‐loaded polymer nanoparticles have been developed for photodynamic therapy. Chlorin e6 (Ce6)‐loaded core–shell–corona polymer micelles of poly(ethylene glycol)‐b‐poly(L ‐aspartic acid)‐b‐poly(L ‐phenylalanine) ( PEG-PAsp-PPhe ) were employed as template nanoparticles for mineralization with calcium phosphate (CaP). CaP deposition was performed by the electrostatic localization of calcium ions at the anionic PAsp middle shells and the subsequent addition of phosphate anions. CaP‐reinforced nanoparticles exhibited enhanced stability. The CaP mineral layer effectively inhibited Ce6 release from the Ce6‐loaded mineralized nanoparticles (Ce6‐NP‐CaP) at physiological pH value. At an acidic endosomal pH value of 5.0, Ce6 release was enhanced, owing to rapid dissolution of the CaP minerals. Upon irradiation of Ce6‐NP‐CaP‐treated MCF‐7 breast‐tumor cells, the cell viability dramatically decreased with increasing irradiation time. The phototoxicity of Ce6‐NP‐CaP was much higher than that of free Ce6. Non‐invasive optical‐imaging results indicated that Ce6‐NP‐CaP exhibited enhanced tumor specificity compared with free Ce6 and Ce6‐loaded non‐mineralized polymer nanoparticles (Ce6‐NP).  相似文献   

15.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   

16.
The drug delivery performances of pH‐responsive magnetic hydrogels (MHs) composed of tragacanth gum (TG), poly(acrylic acid) (PAA), and Fe3O4 nanoparticles (NPs) were investigated in terms of physicochemical as well as biological features. The fabricated drug delivery systems (DDSs) were analyzed using Fourier transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometer, scanning electron microscopy, and transmission electron microscopy. The synthesized MHs were loaded with doxorubicin hydrochloride (Dox) as a universal model anti‐cancer drug. The MHs showed excellent Dox loading and encapsulation efficiencies, mainly due to strong hydrogen bonding and electrostatic interaction between the drug and polymeric matrix, as well as porous micro‐structures of the fabricated MHs. The drug‐loaded MHs showed negligible drug release values in physiological condition. In contrast, in cancerous condition (pH 5.0), both MHs exhibited highest drug release values that qualified them as “smart” DDSs. The cytocompatibilities of the MHs as well as the cytotoxicity of the Dox‐loaded MHs were investigated against human epidermoid‐like carcinoma (Hela) cells through MTT assay. In addition, hyperthermia therapy induced by Fe3O4 NPs was applied to locally raise temperature inside the Hela cells at 45 ± 3°C to promote cell death. As a result, the Dox‐loaded MHs can be considered as potential DDSs for chemo/hyperthermia therapy of solid tumors.  相似文献   

17.
The pH sensitivity of a series of PbAEs synthesized from primary amines and diacrylates is studied. By changing alkyl groups of the amine monomers, the pKb can be tuned across a broad range (from 3.5 to 7.2). Micelles formed from a PEG‐PbAE block copolymer retain the pH sensitivity of PbAE and can stably load hydrophobic molecules under neutral pH, while quickly dissociate and release their cargoes at pH ≈ 6.0. When the chemotherapy drug DOX is loaded, the micelles show efficient cell proliferation inhibition to HeLa cells and fast intracellular release. Thus, the primary‐amine‐based PbAEs are shown to be promising in the construction of intracellular targeting drug delivery systems.

  相似文献   


18.
Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71D3)‐based micelles effectively encapsulate the doxorubicin (DOX) with a high drug‐loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296D1) vesicles. DOX released from the resultant P71D3/DOX micelles is approximately 1.3‐fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71D3/DOX micelles also enhance drug potency in breast cancer MDA‐MB‐231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy‐dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.

  相似文献   


19.
Novel drug‐loaded hydrogel beads for intestine‐targeted controlled release were developed by using pH‐ and temperature‐sensitive carboxymethyl chitosan‐graft‐poly(N,N‐diethylacrylamide) (CMCTS‐g‐PDEA) hydrogel as carriers and vitamin B2 (VB2) as a model drug. The hydrogel beads were prepared based on Ca2+ ionic crosslinking in acidic solution and formed dual crosslinked network structure. The structure of hydrogel and morphology of drug‐loaded beads were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The study about swelling characteristics of hydrogel beads indicated that the beads had obvious pH‐ and temperature‐sensitivity. In vitro release studies of drug‐loaded beads were carried out in pH 1.2 HCl buffer solution and pH 7.4 phosphate buffer solution at 37°C, respectively. The results indicated that the dual crosslinked method could effectively control the drug release rate under gastrointestinal tract (GIT) conditions, which was superior to traditional single crosslinked beads. In addition, the effects of grafting percentage, pH value, and temperature on the release behavior of the VB2 were investigated. The drug release mechanism of CMCTS‐g‐PDEA drug‐loaded beads was analyzed by Peppa's potential equation. According to this study, the dual crosslinked hydrogel beads based on CMCTS‐g‐PDEA could serve as suitable candidate for drug site‐specific carrier in intestine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Drug nanocarriers with magnetic targeting and pH‐responsive drug‐release behavior are promising for applications in controlled drug delivery. Magnetic iron oxides show excellent magnetism, but their application in drug delivery is limited by low drug‐loading capacity and poor control over drug release. Herein, core–shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate (MIO@ACP) were prepared and investigated as magnetic, pH‐responsive drug nanocarriers. Hollow microspheres of magnetic iron oxide (HMIOs) were prepared by etching solid MIO microspheres in hydrochloric acid/ethanol solution. After loading a drug into the HMIOs, the drug‐loaded HMIOs were coated with a protective layer of ACP by using adenosine 5′‐triphosphate (ATP) disodium salt (Na2ATP) as stabilizer, and drug‐loaded core–shell hollow microspheres of MIO@ACP (HMIOs/drug/ACP) were obtained. The as‐prepared HMIOs/drug/ACP drug‐delivery system exhibits superparamagnetism and pH‐responsive drug‐release behavior. In a medium with pH 7.4, drug release was slow, but it was significantly accelerated at pH 4.5 due to dissolution of the ACP shell. Docetaxel‐loaded core–shell hollow microspheres of MIO@ACP exhibited high anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号