首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
纳米流体对流换热机理分析   总被引:2,自引:0,他引:2       下载免费PDF全文
肖波齐  范金土  蒋国平  陈玲霞 《物理学报》2012,61(15):154401-154401
考虑在纳米流体中纳米颗粒做布朗运动引起的对流换热, 基于纳米颗粒在纳米流体中遵循分形分布, 本文得到纳米流体对流换热的机理模型. 本解析模型没有增加新的经验常数, 从该模型发现纳米流体池沸腾热流密度是温度、纳米颗粒的平均直径、 纳米颗粒的浓度、纳米颗粒的分形维数、沸腾表面活化穴的分形维数、基本液体的物理特性的函数. 对不同的纳米颗粒浓度和不同的纳米颗粒平均直径与不同的实验数据进行了比较, 模型预测的结果与实验结果相吻合. 所得的解析模型可以更深刻地揭示纳米流体对流换热的物理机理.  相似文献   

2.
Based on the fractal distribution of nanoparticles, a fractal model for heat transfer of nanofluids is presented in the Letter. Considering heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids, the formula of calculating heat flux of nanofluids by convection is given. The proposed model is expressed as a function of the average size of nanoparticle, concentration of nanoparticle, fractal dimension of nanoparticle, temperature and properties of fluids. It is shown that the fractal model is effectual according to a good agreement between the model predictions and experimental data.  相似文献   

3.
肖波齐  杨毅  许晓赋 《中国物理 B》2014,23(2):26601-026601
A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanoparticles and the fractal dimen- sion of active cavities on the heated surfaces; it also takes into account the effect of the Brownian motion of nanoparticles, which has no empirical constant but has parameters with physical meanings. The proposed model is expressed as a function of the subcooling of fluids and the wall superheat. The fractal analytical model is verified by a reasonable agreement with the experimental data and the results obtained from existing models.  相似文献   

4.
This study investigates flow boiling heat transfer of aqueous alumina nanofluids in single microchannels with particular focuses on the critical heat flux (CHF) and the potential dual roles played by nanoparticles, i.e., (i) modification of the heating surface through particle deposition and (ii) modification of bubble dynamics through particles suspended in the liquid phase. Low concentrations of nanofluids (0.001–0.1 vol.%) are formulated by the two-step method and the average alumina particle size is ~25 nm. Two sets of experiments are performed: (a) flow boiling of formed nanofluids in single microchannels where the effect of heating surface modification by nanoparticle deposition is apparent and (b) bubble formation in a quiescent pool of alumina nanofluids under adiabatic conditions where the role of suspended nanoparticles in the liquid phase is revealed. The flow boiling experiments reveal a modest increase in CHF by nanofluids, being higher at higher nanoparticle concentrations and higher inlet subcoolings. The bubble formation experiments show that suspended nanoparticles in the liquid phase alone can significantly affect bubble dynamics. Further discussion reveals that both roles are likely co-existent in a typical boiling system. Properly surface-promoted nanoparticles could minimize particle deposition hence little modification of the heating surface, but could still contribute to the modification in heat transfer through the second mechanism, which is potentially promising for microchannel applications.  相似文献   

5.
肖波齐 《中国物理 B》2013,22(1):14402-014402
Analytical expressions for nucleate pool boiling heat transfer of nanofluid in the critical heat flux (CHF) region are derived taking into account the effect of nanoparticles moving in liquid based on the fractal geometry theory. The proposed fractal model for the CHF of nanofluid is explicitly related to the average diameter of the nanoparticles, the volumetric nanoparticle concentration, the thermal conductivity of nanoparticles, the fractal dimension of nanoparticles, the fractal dimension of active cavities on the heated surfaces, the temperature, and the properties of the fluid. It is found that the CHF of nanofluid decreases with the increase of the average diameter of nanoparticles. Each parameter of the proposed formulas on CHF has a clear physical meaning. The model predictions are compared with the existing experimental data, and a good agreement between the model predictions and experimental data is found. The validity of the present model is thus verified. The proposed fractal model can reveal the mechanism of heat transfer in nanofluid.  相似文献   

6.
Pool boiling heat transfer using nanofluids (which are suspensions of nano-sized particles in a base fluid) has been a subject of many investigations and incoherent results have been reported in literature regarding the same. In the past, experiments were conducted in nucleate pool boiling with varying parameters such as particle size, concentration, surface roughness etc. and all sort of results ranging from heat transfer enhancement, deterioration and no effect were reported. This work tries to segregate a survey on pool boiling of nanofluids with respect to particle concentration. This is due to the fact that a major drift in heat transfer behavior is observed at higher and lower particle concentration. But upon deep perusal it has been found that deterioration in heat transfer coefficient are mainly observed at higher particle concentrations (4–16% by weight) and enhancements mainly at lower particle concentrations (0.32–1.25% by weight). Moreover, the relative size of the particle with respect to the surface roughness of the heating surface seems to play an important role in understanding the boiling behaviour. Also, recent works have reported that change in ‘surface wetting’ of the heating surface due to nanofluids and the formation of a porous layer modifiying nucleation site density can be of importance in predicting nucleate pool boiling characteristics of nanofluids. In the present paper, attempts are made to make systematic analysis of results in literature and try to bring out a common understanding of the results in literature.  相似文献   

7.
This paper is concerned about pool boiling heat transfer using nanofluids, a subject of several investigations over the past few years. The work is motivated by the controversial results reported in the literature and the potential impact of nanofluids on heat transfer intensification. Systematic experiments are carried out to formulate stable aqueous based nanofluids containing γ-alumina nanoparticles (primary particle size 10–50 nm), and to investigate their heat transfer behaviour under nucleate pool boiling conditions. The results show that alumina nanofluids can significantly enhance boiling heat transfer. The enhancement increases with increasing particle concentration and reaches ∼ ∼40% at a particle loading of 1.25% by weight. Discussion of the results suggests that the reported controversies in the thermal performance of nanofluids under the nucleate pool boiling conditions be associated with the properties and behaviour of the nanofluids and boiling surface, as well as their interactions.  相似文献   

8.
This paper is concerned about pool boiling heat transfer using nanofluids, a subject of several investigations over the past few years. The work is motivated by the controversial results reported in the literature and the potential impact of nanofluids on heat transfer intensification. Systematic experiments are carried out to formulate stable aqueous based nanofluids containing γ-alumina nanoparticles (primary particle size 10–50 nm), and to investigate their heat transfer behaviour under nucleate pool boiling conditions. The results show that alumina nanofluids can significantly enhance boiling heat transfer. The enhancement increases with increasing particle concentration and reaches ∼ ∼40% at a particle loading of 1.25% by weight. Discussion of the results suggests that the reported controversies in the thermal performance of nanofluids under the nucleate pool boiling conditions be associated with the properties and behaviour of the nanofluids and boiling surface, as well as their interactions.This revised version was published online in August 2005 with a corrected issue number.  相似文献   

9.
Research on nanofluids has progressed rapidly since their enhanced thermal conductivities were identified about a decade ago. For boiling heat transfer with nanofluids, however, many contradictory results have been reported, which cannot be explained by conventional theories developed for pure fluids. Recent progress in colloidal science shows that the presence of nanoparticles could enhance the spreading and wettability of base fluids through a long-range structural disjoining pressure. This article explores theoretically the influence of structural disjoining pressure to the nucleate boiling heat transfer through a four-zoned microlayer evaporation model. The influence of particle size, particle concentration, and heat flux on the structural disjoining pressure and the interfacial shape of the microlayer are investigated. The calculated equilibrium interfacial shape shows that the meniscus is displaced toward the vapor phase in the presence of nanoparticles, an implication of enhanced wettability. Such an improved wettability affects the number of active nucleate sites and bubble dynamics significantly, which could be one of the important parameters that is responsible for the controversy of boiling heat transfer with nanofluids reported in the literature.  相似文献   

10.
11.
针对纳米流体在微小尺度传热领域的应用,在常压下对微槽道中纳米流体的流动沸腾临界热流密度进行实验研究。分别以体积浓度为0.2%、0.5%的水基Al2O3纳米流体为工质进行试验,研究不同质量流速、槽道尺寸以及体积浓度等因素对沸腾CHF的影响。对比水为工质实验结果,表明:槽道尺寸、质量流速对于水-Al2O3纳米流体和纯水的CHF影响一致。其它参数一定的工况下,纳米流体CHF比纯水大,且随着纳米流体体积浓度增大,出口壁面过热度会增大。最后介绍一个微槽道沸腾CHF的预测模型,在评价其不足的基础上提出一个关于CHF的预测公式,与实验数据进行对比,验证该公式的适用性。  相似文献   

12.
The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245–254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the ‘Leong et al.’s dynamic model’. However, the Leong et al.’s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.’s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for various nanoparticle sizes.  相似文献   

13.
根据实验所得沸腾曲线,对纳米颗粒悬浮液进行稳态数值模拟,计算了不同过热度下活化核心的密度.计算结果表明一对于不同浓度的纳米颗粒悬浮液,在考虑了其物性变化对沸腾传热的影响外,颗粒的加入对活化核心密度产生的影响是主要的因素,并且影响效果随颗粒浓度的变化不呈单向趋势.  相似文献   

14.
Nanofluids, a class of solid–liquid suspensions, have received an increasing attention and studied intensively because of their anomalously high thermal conductivites at low nanoparticle concentration. Based on the fractal character of nanoparticles in nanofluids, the probability model for nanoparticle’s sizes and the effective thermal conductivity model are derived, in which the effect of the microconvection due to the Brownian motion of nanoparticles in the fluids is taken into account. The proposed model is expressed as a function of the thermal conductivities of the base fluid and the nanoparticles, the volume fraction, fractal dimension for particles, the size of nanoparticles, and the temperature, as well as random number. This model has the characters of both analytical and numerical solutions. The Monte Carlo simulations combined with the fractal geometry theory are performed. The predictions by the present Monte Carlo simulations are shown in good accord with the existing experimental data.  相似文献   

15.
In the second part of review, we have considered the problems related to momentum and heat transfer in nanofluids. Results on hydrodynamic friction, forced and free convection in the laminar and turbulent flows are analysed; heat transfer at boiling is considered. The available models describing heat transfer intensification and suppression in nanofluids are studied. It is shown that for some problems on convective heat transfer there is a contradiction in data of different authors; possible reasons for this contradiction are analysed.  相似文献   

16.
This is a numerical investigation of nanoparticle transport effect on magnetohydrodynamic mixed convective heat transfer of electrically conductive nanofluids in micro-annuli with temperature-dependent thermophysical properties. The modified Buongiorno's non-homogeneous model is applied for the nanoparticle-fluid suspension to simulate the migration of nanoparticles into the base fluid, originating from the thermophoresis (nanoparticle migration because of temperature gradient) and Brownian motion (nanoparticle slip velocity because of concentration gradient). Due to surface roughness at the solid–fluid interface in micro-annuli, the wall surfaces are subjected to a linear slip condition to assess the non-equilibrium region near the interface. The fluid flow has been assumed to be fully developed, and the governing equations including continuity, momentum, energy, and nanoparticle transport equation are reduced to a system of ordinary differential equations, before they have been solved numerically. The results are presented with and without considering the dependency of thermophysical properties upon the temperature. It is indicated that ignoring the temperature dependency of thermophysical properties does not significantly affect the flow fields and heat transfer behavior of nanofluids, but it changes the relative magnitudes. Furthermore, in the presence of magnetic field, smaller nanoparticles are more appropriate than larger ones.  相似文献   

17.
分形介质的传热与传质分析(综述)   总被引:9,自引:0,他引:9  
本文论述了分形介质的分形理论和数学基础,并简要综述了用分形理论和方法研究分形介质的传热与传质特性(如多孔介质的渗透率、热导率以及池核态沸腾换热)方面目前所取得的研究进展,最后扼要展望了用分形理论和方法进一步研究分形介质的传热与传质的可能的若干课题和方向。  相似文献   

18.
Abstract

Fluids in which nanometer-sized solid particles are suspended are called nanofluids. These fluids can be employed to increase the heat transfer rate in various applications. In this study, the convective heat transfer for Cu/water nanofluid through a circular tube was experimentally investigated. The flow was laminar, and constant wall temperature was used as thermal boundary condition. The Nusselt number of nanofluids for different nanoparticle concentrations, as well as various Peclet numbers, was obtained. Also, the rheological properties of the nanofluid for different volume fractions of nanoparticles were measured and compared with theoretical models. The results show that the heat transfer coefficient is enhanced by increasing the nanoparticle concentrations as well as the Peclet number.  相似文献   

19.
This paper reports a numerical analysis of the performance of a counter-flow rectangular shaped microchannel heat exchanger (MCHE) using nanofluids as the working fluids. Finite volume method was used to solve the three-dimensional steady, laminar developing flow and conjugate heat transfer in aluminum MCHE. The nanofluids used were Ag, Al2O3, CuO, SiO2, and TiO2 and the performance was compared with water. The thermal, flow fields and performance of the MCHE were analyzed using different nanofluids, different Reynolds numbers and different nanoparticle concentrations. Temperature profile, heat transfer coefficient, pressure profile, and wall shear stress were obtained from the simulations and the performance was discussed in terms of heat transfer rate, pumping power, effectiveness, and performance index. Results indicated enhanced performance with the usage of nanofluids, and slight penalty in pressure drop. The increase in Reynolds number caused an increase in the heat transfer rate and a decrease in the overall bulk temperature of the cold fluid. The increase in nanoparticle concentration also yielded better performance at the expense of increased pressure drop.  相似文献   

20.
爆发沸腾换热和纳米流体传热具有很重要的理论和实用意义.但由于爆发沸腾传热过程中,液体内部空间温度梯度大,相变速度快,表现出一定的特殊性,纳米流体传热对其传热过程机理的研究,往往需要在实验条件难以实现的空间和时间极限下,充分研究液相和气相内部的温度、压力和运动状态及其空间分布.采用分子动力学的方法,通过对比研究纯水和碳纳米管/水混合体系爆发沸腾过程,对两种体系密度分布、温度场和应力场研究和对比分析,揭示碳纳米管/水混合体系的强化换热机理,探究碳纳米管对混合体系爆发沸腾换热和纳米流体传热的促进作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号