首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The kinetics of oxidation of [CoII(EDTA)]2- (EDTA = ethylenediaminetetraacetate) by N-bromosuccinimide (NBS) in aqueous solution obey the equation: Rate = k 2 K 3[CoII]T[NBS]/{1 + [H+]/K 2 + K 3[NBS]} where k 2 is the rate constant for the electron-transfer process, K 2 the equilibrium constant for the dissociation of [CoII(EDTAH)(H2O)] to [CoII(EDTA)(OH)]3– and K 3 the pre-equilibrium formation constant. The activation parameters are reported. It is proposed that electron transfer proceeds via an inner-sphere mechanism with the formation of an intermediate which slowly generates hexadentate[CoIII(EDTA)].Abstracted from the M.Sc. thesis of Eman S. H. Khaled.  相似文献   

2.
Summary Rate constants are reported for reaction of the 4-cyanopyridine complexes [Fe(CN)5(4CNpy)]3– and [Mo(CO)5(4CNpy)] with a variety of incoming ligands, in aqueous methanol (40 vol % MeOH) and in toluene respectively, at 298.2 K (ambient pressure). The dependence of rate constants on the nature and concentration of the incoming ligand is discussed in terms of the operation of the limiting dissociative,D, mechanism for substitution; the operation of this mechanism here, and in analogous pentacyanoferrate(II), pentacarbonylmolybdenum(I), and penta- and tetra-cyanocobaltate(III) complexes is reviewed. The effect of pressure on rate constants for replacement of 4-cyanopyridine in [Mo(CO)5(4CNpy)], in toluene solution at 298.2 K, indicates an activation volume of +3 cm3 mol–1.  相似文献   

3.
Reduction of [Ru2(CH3COO)2(C2O4)2(H2O)2]? by N-(2-hydroxyethyl)-ethylenediaminetriacetatoaquotitanium(III) [Ti(HEDTA)] involves several distinct stages. The first stage has a half-time of less than 1 ms, and is interpreted as a substitution reaction leading to a multinuclear intermediate. The second stage has a second-order rate constant of 5 x 103M?1s?1 [25°C, μ = 0.1 m (LiCF3SO3)]. The rate-limiting process for the second stage is electron transfer within the assembled multinuclear complex. Subsequent slower stages correspond to breakup of the multinuclear Ru(II)2-Ti(IV) complex formed by electron transfer. The overall rate of reduction of this oxidant by Ti(HEDTA) is less than the corresponding rate for the reaction in which Ti3+ acts as reductant, mainly because the stability of the binuclear complex is reduced by the presence of the aminoacid ligand. The data are consistent with the conclusion that the ligand increases the rate of intramolecular ET, probably by reducing geometric change associated with oxidation of Ti(III) to Ti(IV).  相似文献   

4.
A heptadentate ligand, tris[(L)-alanyl-2-carboxamidoethyl]amine (H3trenala), has been synthesized as its tetrahydrochloride salt; its protonation constants and the stability constants of the copper(II) and nickel(II) chelates have been determined by potentiometry. Mononuclear species with protonated, neutral, or deprotonated forms of the ligand, [Cu(H5trenala)]4+, [M(H4trenala)]3+, [M(H3trenala)]2+, [M(H2trenala)]+, and [M(Htrenala)] (M?=?Cu2+ and Ni2+) have been detected in all cases, while only Cu2+ gives dinuclear [Cu2(H2trenala)]2+, [Cu2(Htrenala)]2+, [Cu2(trenala)]+, and [Cu2(trenala)(OH)] species. Two dinuclear copper(II) complexes have been prepared and characterized by spectroscopic techniques (IR, UV-Vis, mass electro-spray) and thermogravimetric analysis.  相似文献   

5.
Summary The kinetics and mechanism of the system: [FeL(OH)]2–n + 5 CN [Fe(CN)5(OH)]3– + Ln–, where L=DTPA or HEDTA, have been investigated at pH= 10.5±0.2, I=0.25 M and t=25±0.1 C.As in the reaction of [FeEDTA(OH)]2–, the formation of [Fe(CN)5(OH)]3– through the formation of mixed ligand complex intermediates of the type [FeL(OH)(CN)x]2–n–x, is proposed. The reactions were found to consist of three observable stages. The first involves the formation of [Fe(CN)5(OH)]3–, the second is the conversion of [Fe(CN)5(OH)]3– into [Fe(CN)6]3– and the third is the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by oxidation of Ln– The first reaction exhibits a variable order dependence on the concentration of cyanide, ranging from one at high cyanide concentration to three at low concentration. The transition between [FeL(OH)]2–n and [Fe(CN)5(OH)]3– is kinetically controlled by the presence of four cyanide ions around the central iron atom in the rate determining step. The second reaction shows first order dependence on the concentration of [Fe(CN)5(OH)]3– as well as on cyanide, while the third reaction follows overall second order kinetics; first order each in [Fe(CN)6]3– and Ln–, released in the reaction. The reaction rate is highly dependent on hydroxide ion concentration.The reverse reaction between [Fe(CN)5(OH)]3– and Ln– showed an inverse first order dependence on cyanide concentration along with first order dependence each on [Fe(CN)5– (OH)]3– and Ln–. A five step mechanism is proposed for the first stage of the above two systems.  相似文献   

6.
Summary The stability constant for [FeII(CN)5(4-picam)]3– (4-picam=4-picolylamine), K2, was calculated from the measured dissociation and formation constants. The reduction potential obtained by cyclic voltammetry allowed the calculation of K3. Comparison of K2 and K3 for this and other substituted pentacyanoferrate(II) complexes supports the fact that bonding properties of azines coordinated to {Fe(CN)5}n– change with the iron oxidation state. The variation on the rate of release of 4-picam with pH and added electrolyte concentration was interpreted on the basis of solvent effects.Predoctoral fellow of CONICET, República Argentina.Member of the Carrera del Investigador Científico, CONICET, República Argentina.  相似文献   

7.
A facile procedure for synthesizing the mono(hydroxo)tris(carboxylato)platinum(IV) species has been achieved. The reaction of [PtII(OH)2(dmpda)] (dmpda=2,2-dimethyl-1,3-propanediamine) with a 30% aqueous solution of H2O2 in the presence of a carboxylic acid produces a stable [PtIV(OOCR)3(OH)(dmpda)] (R=Me, Et) complex in high yield. The crystal structures of [PtIV(OOCMe)3(OH)(dmpda)] . H2O (triclinic P1 bar, a=8.761(2) Å, b=9.245(3) Å, c=10.659(2) Å, =106.25(2)°, =93.90(2)°, =98.92(2)°, V=813.1(3) Å3, Z=2, R= 0.0474) and [PtIV(OOCEt)3(OH)(dmpda)] (monoclinic P21/c, a=12.777(4) Å, b=10.514(2) Å, c=14.971(3) Å, =107.40(2)°, V=1919.2(8) Å3, Z=4, R=0.0611) show that the hydroxyl group has been selectively positioned at an axial site. The intramolecular hydrogen bond between the OH and C=O moiety exists (O(H)...=C, 2.83 Å for [PtIV(OOCMe)3(OH)(dmpda)] · H2O; 2.72 Å for [PtIV(OOCEt)3(OH)(dmpda)]. Formation of the axial-mono(hydroxo)tris(carboxylato)platinum(IV) species may be ascribed to a combination of `reactive-equatorial effects' with `cis-addition' in the carboxylic acid.  相似文献   

8.
The kinetics of oxidation of the ternary complexes [CoII(ADA)(Su)(H2O)]2? and [CoII(ADA)(Ma)(H2O)]2? (ADA?=?N-(2-acetamido)iminodiacetate, Su?=?succinate and Ma?=?maleate) by periodate have been investigated spectrophotometrically at 580?nm under pseudo-first-order conditions in aqueous medium over 30?C50?°C range, pH 3.72?C4.99, and I?=?0.2?mol?dm?3. The kinetics of the oxidation of [CoII(ADA)(Su)(H2O)]2? obeyed the rate law d[CoIII]/dt?=?[CoII(ADA)(Su)(H2O)]2?[H5IO6] {k 4 K 5?+?(k 5 K 6 K 2/[H+)}, and the kinetics oxidation of [CoII(ADA)(Ma)(H2O)]2? obeyed the rate law d[CoIII]/dt?=?k 1 K 2[CoII] T [IVII] T /{1?+?([H+]/K 7)?+?K 2[IVII] T }. The pseudo-first-order rate constant, k obs, increased with increasing pH, indicating that the hydroxo form of maleate complex, [CoII(ADA)(Ma)(OH)]3?, is the reactive species. The initial Co(III) products were slowly converted to the final products, fitting an inner-sphere mechanism. Thermodynamic activation parameters were calculated using the transition state theory equation. The initial cobalt(II) complexes were characterized by physicochemical and spectroscopic methods.  相似文献   

9.
Herein we present a systematic study of the structures and magnetic properties of six coordination compounds with mixed azide and zwitterionic carboxylate ligands, [M(N3)2(2‐mpc)] (2‐mpc=N‐methylpyridinium‐2‐carboxylate; M=Co for 1 and Mn for 2 ), [M(N3)2(4‐mpc)] (4‐mpc=N‐methylpyridinium‐4‐carboxylate; M=Co for 3 and Mn for 4 ), [Co3(N3)6(3‐mpc)2(CH3OH)2] ( 5 ), and [Mn3(N3)6(3‐mpc)2] ( 6 ; 3‐mpc=N‐methylpyridinium‐3‐carboxylate). Compounds 1 – 3 consist of one‐dimensional uniform chains with (μ‐EO‐N3)2(μ‐COO) triple bridges (EO=end‐on); 5 is also a chain compound but with alternating [(μ‐EO‐N3)2(μ‐COO)] triple and [(EO‐N3)2] double bridges; Compound 4 contains two‐dimensional layers with alternating [(μ‐EO‐N3)2(μ‐COO)] triple, [(μ‐EO‐N3)(μ‐COO)] double, and (EE‐N3) single bridges (EE=end‐to‐end); 6 is a layer compound in which chains similar to those in 5 are cross‐linked by a μ3‐1,1,3‐N3 azido group. Magnetically, the three CoII compounds ( 1 , 3 , and 5 ) all exhibit intrachain ferromagnetic interactions but show distinct bulk properties: 1 displays relaxation dynamics at very low temperature, 3 is an antiferromagnet with field‐induced metamagnetism due to weak antiferromagnetic interchain interactions, and 5 behaves as a noninnocent single‐chain magnet influenced by weak antiferromagnetic interchain interactions. The magnetic differences can be related to the interchain interactions through π–π stacking influenced by different substitution positions in the ligands and/or different magnitudes of intrachain coupling. All of the MnII compounds show overall intrachain/intralayer antiferromagnetic interactions. Compound 2 shows the usual one‐dimensional antiferromagnetism, whereas 4 and 6 exhibit different weak ferromagnetism due to spin canting below 13.8 and 4.6 K, respectively.  相似文献   

10.
The present work describes the preparation and characterization of some metal ion complexes derived from 4-formylpyridine-4 N-(2-pyridyl)thiosemicarbazone (HFPTS). The complexes have the formula; [Cd(HFPTS)2H2O]Cl2, [CoCl2(HPTS)]·H2O, [Cu2Cl4(HPTS)]·H2O, [Fe (HPTS)2Cl2]Cl·3H2O, [Hg(HPTS)Cl2]·4H2O, [Mn(HPTS)Cl2]·5H2O, [Ni(HPTS)Cl2]·2H2O, [UO2(FPTS)2(H2O)]·3H2O. The complexes were characterized by elemental analysis, spectral (IR, 1H-NMR and UV–Vis), thermal and magnetic moment measurements. The neutral bidentate coordination mode is major for the most investigated complexes. A mononegative bidentate for UO2(II), and neutral tridentate for Cu(II). The tetrahedral arrangement is proposed for most investigated complexes. The biological investigation displays the toxic activity of Hg(II) and UO2(II) complexes, whereas the ligand displays the lowest inhibition activity toward the most investigated microorganisms.  相似文献   

11.
Abstract

Five new coordination complexes [MnII (L1)2(4,4′-bpy)]n (1), [NiII (L1)2(4,4′-bpy)]n (2), [ZnII (L1)2(4,4′-bpy)]n (3), [CuII (L1)2(phen)2]Cl2 (4) and [CuII 2(L1)2(2,2′-bpy)2]Cl2 (5) (HL1?=?3,4,5-trifluorobenzeneseleninic acid, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline), have been synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis and IR spectroscopy. Complexes 13 display similar layers structures. In 13, the adjacent layers are further connected through π···π interactions to form three-dimensional supramolecular structures. Complexes 4 and 5 show a dimer containing an eight-membered ring. The dimer extends into three-dimensional supramolecular structures through π···π interactions, C–H···F and C–H···Cl interactions.  相似文献   

12.
The mechanism of oxidation of ternary complexes, [CoII(nta)(S)(H2O)2]3? and [CoII(nta)(M)(H2O)]3? (nta = nitrilotriacetate acid, S = succinate dianion, and M = malonate dianion), by periodate in aqueous medium has been studied spectrophotometrically over the (20.0–40.0) ± 0.1°C range. The reaction is first order with respect to both [IO4?] and the complex, and the rate decreases over the [H+] range (2.69–56.20) × 10?6 mol dm?3 in both cases. The experimental rate law is consistent with a mechanism in which both the hydroxy complexes [CoII(nta)(S)(H2O)(OH)]4? and [CoII(nta)(M)(OH)]4? are significantly more reactive than their conjugate acids. The value of the intramolecular electron transfer rate constant for the oxidation of the [CoII(nta)(S)(H2O)2]3?, k1 (3.60 × 10?3 s?1), is greater than the value of k6 (1.54 × 10?3 s?1) for the oxidation of [CoII(nta)(M)(H2O)]3? at 30.0 ± 0.1°C and I = 0.20 mol dm?3. The thermodynamic activation parameters have been calculated. It is assumed that electron transfer takes place via an inner‐sphere mechanism. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 103–113, 2008  相似文献   

13.
A procedure for the synthesis of mpa h c-[Ru(NO)(NH3)4(OH)]Cl2 in a nearly quantitative yield (~95%) comprising treatment of a solution of (NH4)2[Ru(NO)Cl5] with ammonium carbonate at t ~80°C was developed. It was found that [Ru(NO)(NH3)4(H2O)]Cl3·H2O and trans-[Ru(NO)(NH3)4Cl]Cl2 formed in the reaction of [Ru(NO)(NH3)4(OH)]Cl2 with hydrochloric acid at various temperatures most often contain some initial hydroxy complex. The former compound is unstable, even at room temperature, it slowly eliminates water and HCl. A procedure for preparing the latter compound in a pure state in 85–90% yield was proposed. The acidity constant of the complex trans-[Ru(NO)(NH3)4(H2O)]3+ at room temperature (K a = (4 ± 1) × 10?2) was estimated by 14N NMR spectroscopy.  相似文献   

14.
The kinetics and mechanism of the formation of an antitubercular complex [Fe(CN)5(INH)]3? based on the substitution reaction between K4[Fe(CN)6] and isoniazid (INH), i.e., isonicotinohydrazide, catalyzed by Hg2+ in aqueous medium was studied spectrophotometrically at 435 nm (the λmax of the golden‐yellow‐colored complex [Fe(CN)5(INH)]3?) as a function of pH, ionic strength, temperature, and the concentration of the reactants and the catalyst. The replacement of coordinated CN? in [Fe(CN)6]4? was facilitated by incoming ligand INH under the optimized reaction conditions: pH 3.5 ± 0.02, temperature = 30.0 ± 0.1°C, and ionic strength I = 0.05 M (KNO3). The stoichiometry of the reaction and the stability constant of the complex ([Fe(CN)5(INH)]3?) have been established as 1:1 and 2.10 × 103 M, respectively. The rate of catalyzed reaction was found to be slow at low pH values, to increase with increasing pH, to attain a maximum value at 3.50 ± 0.02, and finally to decrease after pH > 3.5 due to less availability of H+ ions needed to regenerate the catalytic species. The initial rates were evaluated for each variation from the absorbance versus time curves. The reaction was found to be pseudo‐first order with respect to [INH] and first order with respect to [Fe(CN)64?] at lower concentration, whereas it was found to be fractional order at higher [INH] and [Fe(CN)64?]. The ionic strength dependence study showed a negative salt effect on the rate of the reaction. Based on experimental results, a mechanism for the studied reaction is proposed. The rate equation derived from this mechanism explains all the experimental observations. The evaluated values of activation parameters for the catalyzed reaction suggest an interchange dissociative (Id) mechanism. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 398–406, 2012  相似文献   

15.
Reactions of SnCl2 with the complexes cis‐[PtCl2(P2)] (P2=dppf (1,1′‐bis(diphenylphosphino)ferrocene), dppp (1,3‐bis(diphenylphosphino)propane=1,1′‐(propane‐1,3‐diyl)bis[1,1‐diphenylphosphine]), dppb (1,4‐bis(diphenylphosphino)butane=1,1′‐(butane‐1,4‐diyl)bis[1,1‐diphenylphosphine]), and dpppe (1,5‐bis(diphenylphosphino)pentane=1,1′‐(pentane‐1,5‐diyl)bis[1,1‐diphenylphosphine])) resulted in the insertion of SnCl2 into the Pt? Cl bond to afford the cis‐[PtCl(SnCl3)(P2)] complexes. However, the reaction of the complexes cis‐[PtCl2(P2)] (P2=dppf, dppm (bis(diphenylphosphino)methane=1,1′‐methylenebis[1,1‐diphenylphosphine]), dppe (1,2‐bis(diphenylphosphino)ethane=1,1′‐(ethane‐1,2‐diyl)bis[1,1‐diphenylphosphine]), dppp, dppb, and dpppe; P=Ph3P and (MeO)3P) with SnX2 (X=Br or I) resulted in the halogen exchange to yield the complexes [PtX2(P2)]. In contrast, treatment of cis‐[PtBr2(dppm)] with SnBr2 resulted in the insertion of SnBr2 into the Pt? Br bond to form cis‐[Pt(SnBr3)2(dppm)], and this product was in equilibrium with the starting complex cis‐[PtBr2(dppm)]. Moreover, the reaction of cis‐[PtCl2(dppb)] with a mixture SnCl2/SnI2 in a 2 : 1 mol ratio resulted in the formation of cis‐[PtI2(dppb)] as a consequence of the selective halogen‐exchange reaction. 31P‐NMR Data for all complexes are reported, and a correlation between the chemical shifts and the coupling constants was established for mono‐ and bis(trichlorostannyl)platinum complexes. The effect of the alkane chain length of the ligand and SnII halide is described.  相似文献   

16.
In search of new DNA probes a series of new mono and binuclear cationic complexes [RuH(CO)(PPh3)2(L)]+ and [RuH(CO)(PPh3)2(-μ-L)RuH(CO)(PPh3)2]2+ [L=pyridine-2-carbaldehyde azine (paa), p-phenylene-bis(picoline)aldimine (pbp) and p-biphenylene-bis(picoline)aldimine (bbp)] have been synthesized. The reaction products were characterized by microanalyses, spectral (IR, UV-Vis, NMR and ESMS and FAB-MS) and electrochemical studies. Structure of the representative mononuclear complex [RuH(CO)(PPh3)2(paa)]BF4 was crystallographically determined. The crystal packing in the complex [RuH(CO)(PPh3)2(paa)]BF4 is stabilized by intermolecular π-π stacking resulting into a spiral network. Topoisomerase II inhibitory activity of the complexes and a few other related complexes [RuH(CO)(PPh3)2(L)]+ {L=2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and 2,3-bis(2-pyridyl)-pyrazine (bppz)} have been examined against filarial parasite Setaria cervi. Absorption titration experiments provided good support for DNA interaction and binding constants have also been calculated which were found in the range 1.2 × 103-4.01 × 104 M−1.  相似文献   

17.
Five new complexes, [M(CO)5(apmsh)] [M = Cr; (1), Mo; (2), W; (3)], [Re(CO)4Br(apmsh)] (4) and [Mn(CO)3(apmsh)] (5) have been synthesized by the photochemical reaction of metal carbonyls [M(CO)6] (M = Cr, Mo and W), [Re(CO)5Br], and [Mn(CO)3Cp] with 2-hydroxyacetophenone methanesulfonylhydrazone (apmsh). The complexes have been characterized by elemental analysis, mass spectrometry, f.t.-i.r. and 1H spectroscopy. Spectroscopic studies show that apmsh behaves as a monodentate ligand coordinating via the imine N donor atom in [M(CO)5(apmsh)] (1–4) and as a tridentate ligand in (5).  相似文献   

18.

The rate constant for the basic hydrolysis of benzonitrile (PhCN) to benzamide (PhCONH2) in the [RuII(tpy)(bpy)] moiety (tpy = 2,2' : 6',2"-terpyridine, bpy = 2,2'-bipyridine) (kOH = 3.7 2 10-2 M-1s-1) is 5 2 103 times higher than that of the free ligand and two times higher than that corresponding to the analogous acetonitrile complex. This effect is unusual for a transition metal in the (II) oxidation state, and can be attributed to the π-electron acceptor properties of both the polypyridyl ligands and the phenyl group. Since amides, being poor π-acceptor ligands, are rapidly released from the coordination sphere of ruthenium(II), the final product of this process is the [Ru(tpy)(bpy)(OH)]+ complex. The activation parameters for this nitrile hydrolysis have been determined and compare reasonably well with other values for similar reactions.  相似文献   

19.
Reactions of 3,6-bis(2′-pyridyl)pyridazine derivatives (n-dppn) ¶For the n-dppn ligands, n stands for the size of the cyclic aliphatic ring on positions 4 and 5 of the pyridazine ring, n?=?5, 6, 8, and 12. with MX2(PhCN)2 (M?=?Pd, Pt; X?=?Cl,?Br) have been investigated. The new complexes cis-[PdCl2(n-dppn)] (n?=?5,?6,?8,?12), cis-[PtCl2(n-dppn)]?·?H2O (n?=?5,?6), cis-[PtCl2(8-dppn)] and cis-[PtBr2(5-dppn)] have been characterized by elemental analyses, conductivity measurements, infrared, electronic and 1H-NMR spectra.  相似文献   

20.
The new complexes [Co(ecpzdtc)3] (2) [Zn(ecpzdtc)2(py)] (3) and [Cd(ecpzdtc)2(py)]·H2O (4) have been synthesized from sodium 1-ethoxycarbonyl-piperazine-4-carbodithioate [(Na+(ecpzdtc)]. The ligand and the complexes have been characterized by elemental analyses, IR, magnetic susceptibility and single crystal X-ray data. The [Zn(ecpzdtc)2(py)] and [Cd(ecpzdtc)2(py)]·H2O complexes contain pyridine as the co-ligand. [Co(ecpzdtc)3] (2) crystallizes in the monoclinic system, whereas [Zn(ecpzdtc)2(py)] (3) and [Cd(ecpzdtc)2(py)]·H2O (4) crystallize in the triclinic system. The sulfur donor sites of the bidentate ligand chelate the metal center, forming a four-membered CS2M ring. The cobalt complex has a distorted octahedral geometry, the zinc complex is almost between trigonal bipyramidal and square pyramidal, whereas the cadmium complex is square pyramidal. The crystal structures of all the complexes are stabilized by various types of inter and intramolecular hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号