首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Presented here is a first principles based molecular modeling investigation of the possible role of the side chain in effecting proton transfer in the short-side-chain perfluorosulfonic acid fuel cell membrane under minimal hydration conditions. Extensive searches for the global minimum energy structures of fragments of the polymer having two pendant side chains of distinct separation (with chemical formula: CF(3)CF(O(CF(2))(2)SO(3)H)(CF(2))(n)CF(O(CF(2))(2)SO(3)H)CF(3), where n = 5, 7, and 9) with and without explicit water molecules have shown that the side chain separation influences both the extent and nature of the hydrogen bonding between the terminal sulfonic acid groups and the number of water molecules required to transfer the proton to the water molecules of the first hydration shell. Specifically, we have found that fully optimized structures at the B3LYP/6-311G** level revealed that the number of water molecules needed to connect the sulfonic acid groups scaled as a function of the number of fluoromethylene groups in the backbone, with one, two, and three water molecules required to connect the sulfonic acid groups in fragments with n = 5, 7, and 9, respectively. With the addition of explicit water molecules to each of the polymeric fragments, we found that the minimum number of water molecules required to effect proton transfer also increases as the number of separating tetrafluoroethylene units in the backbone is increased. Furthermore, calculation of water binding energies on CP-corrected potential energy surfaces showed that the water molecules bound more strongly after proton dissociation had occurred from the terminal sulfonic acid groups independent of the degree of separation of the side chains. Our calculations provide a baseline for molecular results that can be used to assess the impact of changes of polymer chemistry on proton conduction, including the side chain length and acidic functional group.  相似文献   

2.
Open 1D channels found in covalent organic frameworks are unique and promising to serve as pathways for proton conduction; how to develop high-rate yet stable transporting systems remains a substantial challenge. Herein, this work reports a strategy for exploring proton-conducting frameworks by engineering pore walls and installing proton-containing polymers into the pores. Amide-linked and sulfonated frameworks were synthesized from imine-linked precursors via sequentially engineering to oxidize into amide linkages and to further anchor sulfonic acid groups onto the pore walls, enabling the creation of sulfonated frameworks with high crystallinity and channel ordering. Integrating sulfonated polyether ether ketone chains into the open channels enables proton hopping to across the channels, greatly increases proton conductivity and enables a stable continuous run. These results suggest a way to explore proton-conducting COFs via systematic engineering of the wall and space of the open nanochannels.  相似文献   

3.
Dynamic protonation equilibria in water of one 4‐methylimidazole molecule as well as for pairs and groups consisting of 4‐methylimidazole, acetic acid and bridging water molecules are studied using Q‐HOP molecular dynamics simulation. We find a qualitatively different protonation behavior of 4‐methylimidazole compared to that of acetic acid. On one hand, deprotonated, neutral 4‐methylimidazole cannot as easily attract a freely diffusing extra proton from solution. Once the proton is bound, however, it remains tightly bound on a time scale of tens of nanoseconds. In a linear chain composed of acetic acid, a separating water molecule and 4‐methylimidazole, an excess proton is equally shared between 4‐methylimidazole and water. When a water molecule is linearly placed between two acetic acid molecules, the excess proton is always found on the central water. On the other hand, an excess proton in a 4‐methylimidazole‐water‐4‐methylimidazole chain is always localized on one of the two 4‐methylimidazoles. These findings are of interest to the discussion of proton transfer along chains of amino acids and water molecules in biomolecules.  相似文献   

4.
Ben-Nun M  Molnar F  Lu H  Phillips JC  Martínez TJ  Schulten K 《Faraday discussions》1998,(110):447-62; discussion 477-520
The membrane protein bacteriorhodopsin contains all-trans-retinal in a binding site lined by amino acid side groups and water molecules that guide the photodynamics of retinal. Upon absorption of light, retinal undergoes a subpicosecond all-trans-->13-cis phototransformation involving torsion around a double bond. The main reaction product triggers later events in the protein that induce pumping of a proton through bacteriorhodopsin. Quantum-chemical calculations suggest that three coupled electronic states, the ground state and two closely lying excited states, are involved in the motion along the torsional reaction coordinate phi. The evolution of the protein-retinal system on these three electronic surfaces has been modelled using the multiple spawning method for non-adiabatic dynamics. We find that, although most of the population transfer occurs on a timescale of 300 fs, some population transfer occurs on a longer timescale, occasionally extending well beyond 1 ps.  相似文献   

5.
Structural and kinetic studies of mutants can give much insight into the function of an enzyme. We report the detection of possible proton transfer pathways into the active site of a number of mutants of the enzyme human carbonic anhydrase II (HCA II). Using a recently developed method of path search in the protein conformational space, we identify hydrogen-bonded networks (or proton paths) that can dynamically connect the protein surface to the active site through fluctuations in protein structure and hydration. The feasibility of establishing such dynamical connectivities is assessed by computing the change in free energy of conformational fluctuations and compared to those identified earlier in the wild type enzyme. It is found that the point mutation facilitates or suppresses one or more of the alternative pathways. Our results allow the use of a generic set of pathways to correlate qualitatively the residual activity in the mutants to the molecular mechanism of proton transfer in the absence of His at position 64. We also demonstrate how the detected pathways may be used to compare the efficiencies of the mutants His-64-Ala/Asn-62-His and His-64-Ala/Asn-67-His using the empirical valence bond theory.  相似文献   

6.
We present a detailed mechanism for the proton transfer from a protein‐bound protonated water cluster to the bulk water directed by protein side chains in the membrane protein bacteriorhodopsin. We use a combined approach of time‐resolved Fourier transform infrared spectroscopy, molecular dynamics simulations, and X‐ray structure analysis to elucidate the functional role of a hydrogen bond between Ser193 and Glu204. These two residues seal the internal protonated water cluster from the bulk water and the protein surface. During the photocycle of bacteriorhodopsin, a transient protonation of Glu204 leads to a breaking of this hydrogen bond. This breaking opens the gate to the extracellular bulk water, leading to a subsequent proton release from the protonated water cluster. We show in detail how the protein achieves vectorial proton transfer via protonated water clusters in contrast to random proton transfer in liquid water.  相似文献   

7.
 A concerted mechanism for proton exchange between water and the amino acid side chains of cysteine, serine, arginine and glutamic acid has been investigated with hybrid density functional theory. The models used include, besides the amino acid side chain, a number of water molecules ranging from one to five in some cases. The modeling of the amino acids without their backbones is shown to be an excellent approximation. Long-range polarization effects were incorporated through a dielectric cavity method allowing a better comparison to existing measurements for free amino acids in water. The barriers converge rather fast with the number of water molecules for all the present amino acids and the converged values are in reasonable agreement with experiments with discrepancies in the range 2–6 kcal/mol. The dielectric effects were found to be small for all systems except cysteine, where there is a lowering of the barrier by 3–5 kcal/mol. The transition states for these concerted pathways form rings in which the separated charges can be stabilized. Received: 25 October 1999 / Accepted: 5 April 2000 / Published online: 21 June 2000  相似文献   

8.
The functional mechanism of the light-driven proton pump protein bacteriorhodopsin depends on the location of water molecules in the active site at various stages of the photocycle and on their roles in the proton-transfer steps. Here, free energy computations indicate that electrostatic interactions favor the presence of a cytoplasmic-side water molecule hydrogen bonding to the retinal Schiff base in the state preceding proton transfer from the retinal Schiff base to Asp85. However, the nonequilibrium nature of the pumping process means that the probability of occupancy of a water molecule in a given site depends both on the free energies of insertion of the water molecule in this and other sites during the preceding photocycle steps and on the kinetic accessibility of these sites on the time scale of the reaction steps. The presence of the cytoplasmic-side water molecule has a dramatic effect on the mechanism of proton transfer: the proton is channeled on the Thr89 side of the retinal, whereas the transfer on the Asp212 side is hindered. Reaction-path simulations and molecular dynamics simulations indicate that the presence of the cytoplasmic-side water molecule permits a low-energy bacteriorhodopsin conformer in which the water molecule bridges the twisted retinal Schiff base and the proton acceptor Asp85. From this low-energy conformer, proton transfer occurs via a concerted mechanism in which the water molecule participates as an intermediate proton carrier.  相似文献   

9.
Geometrical and energetic characteristics of clusters simulating crystal hydrates of phenolsulfonic acid (PSA) and its complexes with poly(vinyl alcohol) (PVA) and the pathways of proton transport therein were determined using the DFT (B3LYP) theory with the 6-31G** basis set. In the formation of proton-conducting PVA—PSA-based membranes, it is energetically favorable to have at least one water molecule in close proximity of the SO3H fragment. In water-free media, the proton migration along the SO3H group is hindered by a barrier of 30–34 kcal mol−1. In the presense of water, the proton conductivity follows the relay mechanism with the activation barrier of 5–8 kcal mol−1, which is close to the experimetally observed barrier of 4–6 kcal mol−1. Thus, the relay mechanism of proton transfer in a sulfonic acid—water complex is energetically the most favorable. The most energetically favorable isomer is the one with the PSA and PVA fragments H-bonded through a water molecule. The deficiency of water causes the PVA OH protons to be involved in hydrogen bonding as well. The role of PVA is to align the acid molecules and participate in the relay proton transfer. Introduction of an aldehyde into the membrane results in significant improvement of its physical properties. The aldehyde reacts with the hydroxyl groups of PVA. At high humidity, one may expect little effect of the degree of cross-linking on the proton mobility.  相似文献   

10.
The tetrameric M2 protein bundle of the influenza A virus is the proton channel responsible for the acidification of the viral interior, a key step in the infection cycle. Selective proton transport is achieved by successive protonation of the conserved histidine amino acids at position 37. A recent X-ray structure of the tetrameric transmembrane (TM) domain of the protein (residues 22-46) resolved several water clusters in the channel lumen, which suggest possible proton pathways to the His37 residues. To explore this hypothesis, we have carried out molecular dynamics (MD) simulations of a proton traveling towards the His37 side chains using MD with classical and quantum force fields. Diffusion through the first half of the channel to the "entry" water cluster near His37 may be hampered by significant kinetic barriers due to electrostatic repulsion. However, once in the entry cluster, a proton can move to one of the acceptor His37 in a nearly barrierless fashion, as evidenced both by MD simulations and a scan of the potential energy surface (PES). Water molecules of the entry cluster, although confined in the M2 pore and restricted in their motions, can conduct protons with a rate very similar to that of bulk water.  相似文献   

11.
The enzyme nitrogenase, when reducing natural and unnatural substrates, requires large numbers of protons per chemical catalytic cycle. The active face of the catalytic site (the FeMo-cofactor, FeMo-co) is situated in a protein domain which is largely hydrophobic and anhydrous, and incapable of serial provision of multiple protons. Through detailed analysis of the high quality protein crystal structures available the characteristics of a chain of water molecules leading from the protein surface to a key sulfur atom (S3B) of FeMo-co are described. The first half of the water chain from the surface inwards is branched, slightly variable, and able to accommodate exogenous small molecules: this is dubbed the proton bay. The second half, from the proton bay to S3B, is comprised of a single chain of eight hydrogen bonded water molecules. This section is strictly conserved, and is intimately involved in hydrogen bonds with homocitrate, an essential component that chelates Mo. This is the proton wire, and a detailed Grotthuss mechanism for serial translocation of protons through this proton wire to S3B is proposed. This controlled serial proton relay from the protein surface to S3B is an essential component of the intramolecular hydrogenation paradigm for the complete chemical mechanisms of nitrogenase. Each proton reaching S3B, instigated by electron transfer to FeMo-co, becomes a hydrogen atom that migrates to other components of the active face of FeMo-co and to bound substrates and intermediates, allowing subsequent multiple proton transfers along the proton wire. Experiments to test the proposed mechanism of proton supply are suggested. The water chain in nitrogenase is comparable with the purported proton pumping pathway of cytochrome c oxidase.  相似文献   

12.
The mechanism of proton transport in the D-pathway of cytochrome c oxidase (CcO) is further elucidated through examining a protonated water/hydroxyl cluster inside the channel. The second generation multi-state empirical valence bond (MS-EVB2) model was employed in a molecular dynamics study based on a high-resolution X-ray structure to simulate the interaction of the excess proton with the channel environment. Our results indicate that a hydrogen-bonded network consisting of about 5 water molecules surrounded by three side chains and two backbone groups (S197, S200, S201, F108) is involved in storage and translocation of an excess proton to the extracellular side of CcO.  相似文献   

13.
The composite material of heteropolyacid (12-phosphotungstic acid; PWA) and polystyrene sulfonic acid (PSS) construct the PWA-encapsulated material by the self-assembly of -SO3H onto the PWA surface; as a result, the fast proton transfer occurred at the interface between the PWA and -SO3H, and the encapsulated material indicated the high anhydrous proton conductivity of 1 x 10(-2) S cm(-1) at 180 degrees C. These anhydrous proton-conducting materials without the existence of water molecules are quite different from customary ion-exchange membrane, such as Nafion, and may have advantages as an electrolyte membrane for polymer electrolyte membrane fuel cells operating at intermediate temperatures under anhydrous conditions but also for electrochemical devices including electrochromic displays, chemical sensors, and others.  相似文献   

14.
Proton transfer (pT) reactions in biochemical processes are often mediated by chains of hydrogen-bonded water molecules. We use hybrid density functional calculations to study pT along quasi one-dimensional water arrays that connect an imidazolium-imidazole proton donor-acceptor pair. We characterize the structures of intermediates and transition states, the energetics, and the dynamics of the pT reactions, including vibrational contributions to kinetic isotope effects. In molecular dynamics simulations of pT transition paths, we find that for short water chains with four water molecules, the pT reactions are semi-concerted. The formation of a high-energy hydronium intermediate next to the proton-donating group is avoided by a simultaneous transfer of a proton from the donor to the first water molecule, and from the first water molecule into the water chain. Lowering the dielectric constant of the environment and increasing the water chain length both reduce the barrier for pT. We study the effect of the driving force on the energetics of the pT reaction by changing the proton affinity of the donor and acceptor groups through halogen and methyl substitutions. We find that the barrier of the pT reaction depends linearly on the proton affinity of the donor but is nearly independent of the proton affinity of the acceptor, corresponding to Br?nsted slopes of one and zero, respectively.  相似文献   

15.
Abstract— The fluorescence spectra of various reduced bacteriorhodopsin chromophore species indicate energy transfer from aromatic amino acid side chains of the protein to the retinyl moiety. Binding studies with retinol reveal that energy transfer occurs only when the retinyl moiety is bound in the chromophoric site of the protein. Retroretinol is a fluorescent probe for the binding site.  相似文献   

16.
Individual hydration water molecules in aqueous protein solutions have been observed using experimental schemes for homonuclear two-dimensional and heteronuclear three-dimensional NMR experiments in H2O solution, which do not require suppression of the solvent line by presaturation. In these experiments, the location of the hydration waters is determined from their nuclear Overhauser effects (NOE s) with individual hydrogen atoms of distinct amino acid residues. In the basic pancreatic trypsin inhibitor (BPTI ), four internal water molecules that had been reported in three different crystal forms were also found to be in the same locations in the solution structure, with lifetimes with respect to exchange of the water protons in excess of 0.3 ns. Additional NOE s with polypeptide protons located on the protein surface may involve either hydration water molecules or hydroxyl protons of amino acid side chains. Their total number is small compared to the number of NOE s expected from the hydration water molecules identified in the crystal structures of BPTI .  相似文献   

17.
We investigate the probable proton-transfer pathways from the surface of human carbonic anhydrase II into the active site cavity through His-64 that has been widely implicated as a key residue along the proton-transfer path. A recursive analysis of hydrogen-bonded clusters in the static crystallographic structure shows that there is no complete path through His-64 in either of its experimentally detected conformations. Side chain conformational fluctuation of His-64 from its outward conformation toward the active site is found to provide a crucial dynamic connectivity needed to complete the path coupled to local reorganization of the protein structure and hydration. The energy and free energy barriers along the detected pathway have been estimated to derive the mechanism of His-64 rotation toward the active site. We also investigate a dynamical connectivity map that highlights networks of disordered water molecules that may promote a direct (and probably transient) access of the solvent to the active site. Our studies reveal how such solvent access channels may be related to the putative proton shuttle mediated by His-64. The paths thus identified can be potentially used as reaction coordinates for further studies on the molecular mechanism of enzyme action.  相似文献   

18.
MINDO /3 calculations have been performed on the Clostridium MP flavodoxin active site (a complex of the redox active coenzyme flavin mononucleotide sandwiched between the side chains of methionine and tryptophan) at various redox levels using coordinates derived from x-ray diffraction studies of the holoenzyme. Frontier orbital indices were calculated and indicate that reduction of the flavin is accompanied by induced polar states in the amino acid side chains. This stabilization of charge by the amino acid side chains could account for the reaction rate enhancement of flavin reduction catalyzed by flavodoxin. Frontier orbitals for free flavin, for the flavodoxin bound flavin without the amino acid side chains, and for the oxidized Desulfovibrio vulgaris flavodoxin active site were computed for comparison.  相似文献   

19.
The free energy profiles for proton transfer along the oriented water file inside the gramicidin A channel were calculated. An original implementation of the rigid-body molecular dynamics method was used for describing the peptide groups of the channel and outer water molecules. The inner water wire was simulated using the PM6 force field parameters, which adequately describe the formation and cleavage of chemical and hydrogen bonds in water molecules. Different mechanisms of proton transfer through the gramicidin A channel were considered, namely, proton H+ translocation, transfer of the anion defect OH?, and reorientation of the water file inside the channel. To facilitate parallel calculations of trajectories, the reaction coordinate was divided into segments, and the results were combined by the weighted histogram analysis method. The first two processes, H+ and OH? transfers, were shown to be barrierless. Only the stage of reorientation of the water file inside the channel has an energy barrier.  相似文献   

20.
Proton transfer reactions were studied in all titratable pairs of amino acid side chains where, under physiologically reasonable conditions, one amino acid may function as a donor and the other one as an acceptor. Energy barriers for shifting the proton from donor to acceptor atom were calculated by electronic structure methods at the MP2/6-31++G(d,p) level, and the well-known double-well potentials were characterized. The energy difference between both minima can be expressed by a parabola using as argument the donor-acceptor distance R(DA). In this work, the fit parameters of the quadratic expression are determined for each donor-acceptor pair. Moreover, it was found previously that the energy barriers of the reactions can be expressed by an analytical expression depending on the distance between donor and acceptor and the energy difference between donor and acceptor bound states. The validity of this approach is supported by the extensive new data set. This new parameterization of proton transfer barriers between titratable amino acid side chains allows us to very efficiently estimate proton transfer probabilities in molecular modelling studies or during classical molecular dynamics simulation of biomolecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号