首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of fullerene C(60) with phthalazine was studied both in solution and in the solid state using the high-speed vibration-milling technique. The reaction in solution gave open-cage fullerene derivative 1 in 44% yield by a one-pot reaction. In contrast, the solid-state reaction afforded dimeric derivative 2 as the sole product. Dimeric derivative 2 was found to undergo intramolecular [2 + 2] cycloaddtion between the two C(60) cages located in close proximity to give a new C(60) dimer 6 in quantitative yield. The structures of these new derivatives of C(60) were determined by spectroscopic methods, and the electrochemical behavior of 2 and 6 was also studied.  相似文献   

2.
Heating (100 °C, toluene) or photolysis (Nd3+ : YAG laser, = 532 mil, benzonitrile) of a mixture of ethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (Hantsch ester) (1) and fullerene C60 under anaerobic conditions results in the formation of fullerene hydrogenation products and ethyl 2,6-dimethylpyridine-3,5-dicarboxylate, which is the product of dehydrogenation of1, identified by IR spectroscopy and mass spectrometry. The triplet state of C60 is quenched by the Hantsch ester.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2531–2534, October, 1996.  相似文献   

3.
The first representative of the pyrimidine-substituted [60]fullereno[1,2-b]aziridines was synthesized by the reaction of fullerene C60 with 2-azido-4,6-diphenylpyrimidine. 2-(Azahomo[60]fullereno)-4,6-diphenylpyrimidine was found to be formed as a by-product. The electrochemical properties of the adducts were studied.  相似文献   

4.
5.
By applying high-pressure H2 to a new fullerene derivative, C63NO2SPh2Py (1), having a 13-membered-ring orifice, 100% incorporation of a H2 molecule into the fullerene cage has been achieved for the first time. This result substantiates the theoretical calculations indicating that the energy barrier required for H2 insertion through an orifice in 1 is considerably lower than that for the previously reported derivative with the largest orifice among open-cage fullerenes synthesized thus far. Upon matrix-assisted laser desorption/ionization mass spectroscopy, the removal of organic addends from the fullerene derivative 1 encapsulating H2 and restoration of the pristine C60 cage, which retains approximately one-third of incorporated H2, have been observed.  相似文献   

6.
7.
The reaction between glycine methyl ester and C60 can be effectively controlled by different iodo-reagents. Addition of DIB ((diacetoxyiodo)benzene) yields the 2,5-bismethoxycarbonyl pyrrolidino[60]fullerene under ultrasonic irradiation; whereas addition of DIB-iodine results in the N-methoxycarbonylmethyl aziridino[60]fullerene under ultrasonic irradiation. The reaction of sarcosine methyl ester with C60 is similar to that of glycine methyl ester under these two conditions. Addition of just iodine to a mixture of sarcosine methyl ester and C60 affords the tetra(amino)[60]fullerene epoxide C60(O)((Me)NCH2COOMe)4. Possible mechanisms are discussed.  相似文献   

8.
During the reaction of reduced C60 with benzyl bromide in benzonitrile, a novel cis-1 C60 adduct, 1,4-dibenzyl-2,3-cyclic phenylimidate C60 (1), was obtained rather than the expected product of 1,4-dibenzyl C60. The structure of compound 1 was analyzed by X-ray single-crystal diffraction, identifying the presence of a five-membered heterocycle at a [5,6] bond of C60. One of the heteroatoms is assigned as a nitrogen atom; however, the identity of the other heteroatom cannot be determined unambiguously by crystallography due to similarity between the nitrogen and oxygen atoms. A related compound (2) bearing the same heterocycle was obtained from anionic C60 benzonitrile solution when no benzyl bromide was added. The structure of compound 2 was determined by NMR, MALDI FT-ICR MS, and UV-vis. Results from MALDI FT-ICR MS for compound 2 show unambiguously that the second heteroatom is an oxygen atom, which is probably from traces of water in the solvent. Control experiments of the reactivity of the neutral, monoanionic, dianionic, and trianionic C60 have shown that the reactive species for the unexpected reaction is the C60 trianion.  相似文献   

9.
10.
Star-shaped regular homopolystyrenes with 22 arms and heteroarm polymers with 12 PS arms and 10 poly(2-vinypyridine) arms have been synthesized by consecutive coupling-functionalization-coupling reactions. The synthesis includes the following stages: the exhaustive grafting of fullerene C60 by polystyryllithium chains (living hexaadducts); the coupling of hexaadducts with the use of dimethyldichlorosilane or 1,4-dibromobutane into twelve-arm macromolecules, where the branching center is composed of two covalently bonded fullerene C60 molecules; functionalization of twelve-arm double-core PS stars during the action of excess dihalides (the replacement of lithium atoms with groups containing chlorine or bromine atoms); and the coupling of living chains of PS or poly(2-vinylpyridine) via reactions with halogen-containing groups at the branching center of double-core PS stars. Linear living polymers used as arms have been prepared by anionic polymerization. Exclusion chromatography has been used to control the individual stages of synthesis. The molecular characteristics of the PS precursor and of star-shaped polymers have been studied in terms of hydrodynamics and light scattering.  相似文献   

11.
HPLC separation of the products of high-temperature reaction of a sublimed mixture of C60–C70 (10: 1) with CF3I in a sealed ampoule allowed isolation and determination of molecular structures (X-ray crystallography and 19F NMR) of two new isomers of C60(CF3)12 and one isomer of C60(CF3)14. These isomers are characterized by low relative formation energies, which suggests that the trifluoromethylation process is basically under the thermodynamic control.  相似文献   

12.
A synthetic strategy is developed that allows for the facile functionalization of carbon nanostructures thus providing the possibility of comparing the striking different optical and electrochemical properties of ensembles based on the diketopyrrolopyrrole (DPP) chromophore covalently attached to either [60]fullerene or graphene.  相似文献   

13.
Putative global energy minima of clusters formed by the adsorption of rare gases on a C(60) fullerene molecule, C(60)X(N) (X=Ne, Ar, Kr, Xe; N ≤ 70), are found using basin-hopping global optimization in an empirical potential energy surface. The association energies per rare gas atom as a function of N present two noticeable minima for Ne and Ar and just one for Kr and Xe. The minimum with the smallest N is the deepest one and corresponds to an optimal packing monolayer structure; the other one gives a monolayer with maximum packing. For Kr and Xe, optimal and maximum packing structures coincide. By using an isotropic average form of the X-C(60) interaction, we have established the relevance of the C(60) surface corrugation on the cluster structures. Quantum effects are relevant for Ne clusters. The adsorption of these rare gases on C(60) follows patterns that differ significantly from the ones found recently for He by means of experimental and theoretical methods.  相似文献   

14.
Aggregation and deposition kinetics of fullerene (C60) nanoparticles   总被引:2,自引:0,他引:2  
The aggregation and deposition kinetics of fullerene C60 nanoparticles have been investigated over a wide range of monovalent and divalent electrolyte concentrations by employing time-resolved dynamic light scattering (DLS) and quartz crystal microbalance (QCM), respectively. Aggregation kinetics of the fullerene nanoparticles exhibited reaction-limited (slow) and diffusion-limited (fast) regimes in the presence of both electrolytes, having critical coagulation concentrations (CCC) of 120 and 4.8 mM for the monovalent (NaCl) and divalent (CaCl2) salts, respectively. The measured stability ratios of the aggregating fullerene nanoparticles were in very good agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, with a derived Hamaker constant of 6.7 x 10-21 J for the fullerene nanoparticles in aqueous medium. For the deposition kinetics studies, the rate of fullerene nanoparticle deposition increased with increasing electrolyte concentrations, as was indicated in the aggregation kinetics results. However, at electrolyte concentrations approaching or exceeding the CCC, the rate of deposition dropped sharply due to significant concurrent aggregation of the fullerene nanoparticles. The deposition of the fullerene nanoparticles was further shown to be mostly irreversible, with immediate detachment of the nanoparticles observed only when exposed to a solution of high pH.  相似文献   

15.
Time-dependent density functional theory (TDDFT) calculations have been used to investigate UV/CD spectra and nonlinear optical (NLO) property of the C(60)-fullerene bisadduct (R,R,(f,s)A)-[CD(+)280] for the first time. The electron transition natures of the four main measured bands are analyzed, and their results are used to designate the excited states involved in an electron-transfer process of the studied compound. On a comparative scale, the predicted excitation energies and oscillator strengths are in reasonable agreement with the observed values, demonstrating the efficiency of TDDFT in predicting the localized and charge transfer transitions. The good agreement between the experimental and the simulated CD spectra shows that TDDFT calculations can be used to assign the absolute configurations (ACs) of chiral fullerene C(60) derivatives with high confidence. The observed large dissymmetry ratio g (g = Δε/ε) at about 700 nm results from the orbital characters of the local fullerene excited state, which leads to large transition magnetic dipole moment and small transition electronic dipole moment. The different functionals and solvent effects on UV/CD spectra were also considered. The studied compound has a possibility to be an excellent second-order NLO material from the standpoint of transparency and large second-order polarizability value.  相似文献   

16.
17.
The enthalpy of the combustion of C60Br24 · 2Br2 has been measured using a rotating-bomb calorimeter as follows: Δ c H 0(C60Br24 · 2Br2, cr) = (?25986 ± 166) kJ/mol. The result has been used to calculate the standard enthalpy of formation, ΔfH 0(C60Br24 · 2Br2, cr) = (2375 ± 166) kJ/mol. The enthalpies of formation of C60Br24 (cr) and dissociation of the C-Br bond have been estimated. The latter value has been compared with enthalpies for the C-X (X = H, F, Cl, Br) bonds in fullerene derivatives and organic compounds.  相似文献   

18.
李化毅  刘玉军 《高分子科学》2014,32(10):1357-1362
Polypropylene samples with fullerene C60, fullerenol C60(OH)24, 1010, C60/168, C60-OH/168 and 1010/168 as antioxidants were prepared by extrusions. MFR, YI, TGA and OIT of all the samples were tested. According to the results of MFR, during the melt extrusion, fullerene showed excellent stability effect on PP. The antioxidative ability of fullerene was comparable to the traditional antioxidant 1010. The antioxidative ability of fullerenol was not significant in the first extrusion and it accelerated the degradation of PP in the second and the third extrusions. TGA and OIT tests showed that the stability effects of fullerene and fullerenol were slightly lower than antioxidant 1010. In the first time, antioxidant 168 was reported to show great synergistic effects with fullerene and fullerenol as antioxidants, which sussested a simple way to enhance the antioxidative abilities of fullerene and fullerenol.  相似文献   

19.
Radical reaction of [60]fullerene with phosphonate esters mediated by manganese(III) acetate in chlorobenzene afforded singly-bonded fullerene dimers, of which the individual meso and racemic isomers could be unexpectedly separated out for the first time.  相似文献   

20.
C60 是富勒烯家族的一员[1] 。C60 分子的发现是H .W .Kroto和R .E .Smalley等人于 1 985年 ,在氦气流中以激光蒸发石墨 ,从而获得以C60 为主的质谱图的 ,并在实验室制得了C60 分子[2 ] 。 1 990年德国科学家Kratschmer,W和美国科学家Huffman ,D .R .等用电弧法克量级制备C60 获得成功[3] 。从此 ,世界范围内掀起了一股C60 的研究热 ,对C60 进行各种化学修饰更是化学家的热门课题 ,经化学修饰的C60 衍生物具有潜在的应用前景。近几年 ,C60 化学反应的研究十分活跃 ,氧化反应、还原反应、聚合…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号