首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
机匣与叶片的相对转动是影响涡轮叶顶间隙流动的重要冈素之一.对LISA 1.5级轴流涡轮间隙内部流动的数值计算结果表明:叶片转动对涡轮间隙流动有阻塞作用.叶片静止时,由于阻塞作用消失,导致间隙入口速度增大,间隙流鼍增加,并且通过间隙的流体全部卷起形成间隙涡.同时在叶片顶部吸力面侧前缘、中部各形成一个间隙涡,使得间隙流动损失增加.而且转速下降会加剧动叶出口截面气流过偏/偏转不足现象.同时叶片静止时,间隙前部各个弦长截面内静压自间隙入口开始一直呈增加趋势,直到叶片尾缘附近截面,间隙截面内静压才逐渐稳定.  相似文献   

2.
锯齿型径向迷宫密封的数值研究   总被引:6,自引:1,他引:5  
数值研究了锯齿型径向迷宫密封的密封性能,对密封的内部流场进行了有限元模拟,展示了节流间隙中有效能流宽度及泄漏介质通流速度随齿插入长度变化的规律,得到了不同齿插入长度时的密封性能,发现密封性以并不是随着齿插八长度的增加而单调增加,而是存在一个最佳的齿插入长度。最佳齿插入长度时,尽管此时的节流间隙较宽,但由于间隙是流动的强烈偏转,使实际的有效通流面积减小,泄漏介质在节波间隙中因而可以获得较大的速度,所  相似文献   

3.
4.
Viscous gas flow in the clearance of a bearing with spiral grooves of different depths on both working surfaces is investigated. In the boundary conditions for the velocities the first- and second-order slip effects are taken into account on the basis of the Cercignani-Slezkin method. An essentially nonlinear differential equation determining the law of pressure variation in the active zone of the bearing is derived. The theory developed is compared with experiment [1] with reference to the example of a physical model with closed center and conclusions concerning the advantages of binary models are drawn. Kaluga. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 46–56, May–June, 2000.  相似文献   

5.
迷宫密封是依靠节流间隙中的节流过程和迷宫空腔内的动能耗散过程来实现密封的,这两个流体流动过程从本质上规定了迷宫密封的密封性能。通过密封内部流动本质的研究,合理利用湍流流动的规律和特点,能够发挥密封内部湍流的增阻作用,提高密封性能。本文数值计算了一种锯齿型径向迷宫密封的内部流动,得到了密封内部的流动形态,揭示了密封内部流动与密封性能的关系。结果表示,密封存在一个最佳的齿插入长度。在最佳齿插入长度时,尽管节流间隙较大,但由于节流间隙内流动收缩和偏转,间隙的有效通流面积却很小,泄漏介质可以在间隙中获得较大的速度,在迷宫空腔内形成正确的耗散涡流,密封具有最佳的密封效果。所以,充分发挥湍流增阻的作用,可以突破节流间隙的微小尺寸限制,实现较大间隙下的良好密封。这不仅会给迷官密封的制造、安装及运行等带来很大的方便,而且可以为发展新的迷宫密封技术奠定理论基础。  相似文献   

6.
制造和装配的误差使滑阀副不可避免的存在几何形状和同轴度误差,径向缝隙流动会对滑阀副换向过程中的力学特性产生影响。在分析径向缝隙流动及经过阀口的粘性流动的基础上,建立了阀芯换向过程的运动微分方程,得出了缝隙间的库埃特流动会使阀芯运动更平稳而泊肃叶流动对阀芯移动有正反两方面的影响。最后仿真分析并试验验证了偏心及缝隙越大阀芯运动越不平稳的结论。  相似文献   

7.
Mind the gap: a new insight into the tip leakage vortex using stereo-PIV   总被引:2,自引:0,他引:2  
The tip leakage vortex (TLV), which develops in the clearance between the rotor and the stator of axial hydro turbines, has been studied for decades. Yet, many associated phenomena are still not understood. For instance, it remains unclear how the clearance size is related to the occurrence of cavitation in the vortex, which can lead to severe erosion. Experiments are here carried out on the influence of the clearance size on the tip vortex structure in a simplified case study. A NACA0009 hydrofoil is used as a generic blade in a water tunnel while the clearance between the blade tip and the wall is varied. The 3D velocity fields are measured using Stereo Particle Image Velocimetry (SPIV) in three planes located downstream of the hydrofoil for different values of the upstream velocity, the incidence angle and a large number of tip clearances. The influence of the flow conditions on the structure of the TLV is described through changes in the vortex intensity, core axial flow, vortex center position and wandering motion amplitude. Moreover, high-speed visualizations are used to highlight the vortex core trajectory and clearance flow alteration, turning into a wall jet as the tip clearance is reduced. The measurements clearly reveal the existence of a specific tip clearance for which the vortex strength is maximum and most prone to generating cavitation.  相似文献   

8.
具有径向流的间隙结构广泛存在于轴承结构与旋转机械中,间隙中的流固耦合作用可能影响整体结构的运动稳定性。基于理论间隙模型和核主泵的实际结构,本文对径向间隙流引起的轴向振动进行了多方面的研究。当间隙的一个壁面产生轴向振动并处于旋转状态时,壁面受到由径向流引起的时变轴向力,因此间隙为叶轮提供附加的轴向刚度和阻尼。通过研究以水为介质的理论间隙模型,发现径向间隙流会引起负的等效轴向动力系数(刚度和阻尼),并且流道形状是影响间隙轴向动力特性的重要因素。扩张流道和平行流道会产生负的轴向动力系数,特别是负阻尼会引起结构振动发散;而收缩流道间隙具有稳定的轴向动力特性。最后,对AP1000核主泵原型叶轮间隙模型进行分析,结果表明,间隙会引起轴向负刚度,并且在一定工况下出现负阻尼,此时系统轴向稳定性及结构安全运行将受到严重的不良影响。  相似文献   

9.
This investigation presents detailed experimental measurements of an active tip-clearance control method based on tip injection in a high-turning axial turbine cascade. Besides that, numerical investigations are also conducted to study phenomena which are not easily measured in the experiments. It aims to study the influence of tip injection on tip clearance flow, with emphasis on the effects of injection locations. Detailed flow field measurements were made downstream of the cascade using a three-hole probe. Static pressure distributions were also measured on the blade surface at 50% and 97.5% span, respectively. The results suggest that tip injection can weaken tip clearance flow, reducing the tip clearance mass flow and its associated losses. Meanwhile, the heat transfer condition on the blade tip surface can be also improved significantly. It also can be found that injection chordwise location plays an important role in the redistribution of secondary flow within the cascade passage. When the same number of injection holes and injection mass flow are applied, holes located in the aft part of blade can perform much better than that in the front part.  相似文献   

10.
This paper develops a theoretical analysis of a Bingham fluid in slipping squeeze flow. The flow field decomposition consists in combining a central extensional flow zone in the plane of symmetry and shear flow zones near the plates. It is also considered that the slipping zone is located around a central sticking zone as previously shown from experiments. It is assumed that the shear stress at the plates is constant in the slipping zone and equals a fixed friction yield value. The squeeze force required to compress a Bingham fluid under the slipping behaviour as well as the radial evolution of the transition point between both sticking and slipping zones are finally determined.  相似文献   

11.
The dynamics of the structure of a cavitating magma flow behind the decompression wave front is experimentally studied by the method of hydrodynamic shock tubes. It is demonstrated that a discrete system of intensely cavitating zones with alternation of low and high densities of the gas phase can be formed at a certain regime of shock-wave loading of the examined fluid sample. Based on the results of a numerical analysis of the formation of an anomalous zone in the cavitating magma flow with anomalously high flow characteristics exceeding the values of these characteristics outside this zone at least by an order of magnitude, a model of an instantaneous transformation of the cavitating magma in the anomalous zone to a gas-droplet system, its ejections, and formation of a free surface on the interface is proposed. A numerical analysis shows that the characteristic wave structure and the anomalous saturation zone are fairly rapidly reconstructed in the vicinity of this free surface of the flow part remaining in the conduit after the ejections, and the above-mentioned jumps of flow characteristics are again formed in the anomalous zone.  相似文献   

12.
Symmetric two-dimensional steady flow past a body in a homogeneous incompressible fluid stream at high Reynolds numbers is considered. A slow motion in the reverse flow zone is investigated and the solution for the flow in the external region is obtained in the second approximation. Additional considerations of the fact that the flow in the closure region of the separation zone and in the wake behind this zone is turbulent are presented. The laminar-turbulent transition in the mixing layer is analyzed and an analogy between this process and the propagation of perturbations upstream of the boundary layer interaction regions is revealed.  相似文献   

13.
Pulsatile flow in a channel with sudden expansion and contraction, referred to as a closed-type cavity, is experimentally and numerically investigated in the range of Re = 50–1650, covering laminar and transitional flow regimes. Investigations are performed in the range of pulsation frequencies corresponding to Wo = 0.28–0.62 and at a constant pulsation amplitude. Pulsation frequency influence to time-averaged recirculation zone length and the development of recirculation zone as well as upper and corner eddies during the pulse cycle at different pulsation frequencies are investigated. A fixed amplitude from zero to maximum velocity is chosen to investigate flow behaviour throughout a whole pulsation cycle. The results show that the pulsation effect on the recirculation zone length is insignificant in the laminar flow regime at investigated frequencies. However, in the transitional flow regime, recirculation zone length was shortened, regardless of the Wo. The analysis of recirculation zone and upper eddy dynamics during the pulse cycle revealed that their growth rate depends on Wo. The development lag effect is observed at certain velocity phase angles. The analysis of shear rate and turbulence intensity profiles revealed that increased instabilities are determined by the interaction of recirculation zone, upper eddy and the forward-facing step during the pulse cycle.  相似文献   

14.
Supersonic perfect-gas flow past a circular cylinder with an isothermal surface is investigated at the Mach number 5 and Reynolds numbers ranging from 30 to 500,000. It is shown that two branches of the numerical solution of the problem can exist. On the first branch the following flow patterns are successively realized as Re is increased: separationless flow, flow with formation of a local separation zone, and flow with formation of a global separation zone. On the second branch the flow pattern with a local separation zone is observed at all Reynolds numbers; at a certain value of Re this solution jumps to the first branch.  相似文献   

15.
为明晰回转窑内颗粒的运动行为及偏析机理,以绿豆、黄豆和黑豆为颗粒介质,依次对3种装填顺序下的颗粒流动过程进行离散元模拟与实验研究,以颗粒质量分数和平均粒度为判据,对颗粒偏析进行评价。结果表明,回转窑内颗粒流动区可分为自由滚落区、渗流呆滞区以及窑壁携带区,自由滚落区颗粒流速最大,而渗流呆滞区流速最小。窑内颗粒沿轴向输运过程发生径向偏析,形成夹层结构,小颗粒受渗流作用在渗流呆滞区中心形成内核,大粒径和中等粒径颗粒集中在自由滚落区和窑壁携带区。窑内颗粒力链分布不均匀,强力链分布于近窑壁区,弱力链分布于自由滚落区和渗流呆滞区,且渗流呆滞区力链细而密集。当窑头附近不同粒径颗粒存在轴向速度差时,颗粒在轴向发生掺混,并产生径向偏析。  相似文献   

16.
A flow past a heterogeneous porous sphere is investigated by using the perturbation theory. The flow through the sphere is divided into two zones, which are fully saturated with the viscous fluid, and the flow in these zones is governed by the Brinkman equation. The space outside the sphere, where a clear fluid flows, is also divided into two zones: the Navier–Stokes zone and the Oseen flow zone. The solutions on the interface inside the sphere are matched with the condition proposed by Merrikh and Mohammad. The stream function in the Navier–Stokes zone is matched with that on the sphere surface by the condition proposed by Ochoa-Tapia and Whitaker. It is found that the drag on the spherical shell decreases as the permeability toward the sphere boundary increases.  相似文献   

17.
单裂缝中携砂液流动规律研究   总被引:3,自引:0,他引:3  
裂缝中携砂液流动是一种固液两相流,携砂液的运移与支撑剂的铺置是水力压裂裂缝保持导流能力的关键.本文基于FLUENT流体计算软件,采用双流体模型,将颗粒看作拟流体,携砂液按照牛顿流体处理,分析了支撑剂体积分数α_s、阿基米德数Ar、颗粒雷诺数Re以及裂缝入口边界对流动规律的影响.研究结果表明:携砂液在裂缝中的流动过程中,发展成为支撑剂体积分数不同的四个区域,包括砂堤区、颗粒悬浮区、颗粒滚流区和无砂区;支撑剂的沉降程度随着支撑剂体积分数和阿基米德数的增加而增加,而随着雷诺数增加而降低;入口为网眼型时,进入裂缝后过流面积的增加导致流速突降,使得支撑剂更容易在入口处产生堆积,在同一入口流速下,较均匀入口的工况铺砂高度大.  相似文献   

18.
Newton's method is applied to the finite volume approximation for the steady state heat transfer, fluid flow and unknown interfaces in a floating molten zone. The streamfunction/vorticity and temperature formulation of the Navier–Stokes and energy equations and their associated boundary conditions are written in generalized curvilinear co-ordinates and conservative law form with the Boussinesq approximation. During Newton iteration the ILU(0) preconditioned GMRES matrix solver is applied for solving the linear system, where the sparse Jacobian matrix is estimated by finite differences. Nearly quadratic convergence of the method is observed. Sample calculations are reported for sodium nitrate, a high-Prandtl-number material (Pr = 9.12). Both natural convection and thermocapillary flow as well as an overall mass balance constraint in the molten zone are considered. The effects of convection and heat input on the flow patterns, zone position and interface shapes are illustrated. After the lens effect due to the molten zone is considered, the calculated flow patterns and interface shapes are compared with the observed ones and are found to be in good agreement.  相似文献   

19.
The results of an experimental investigation of the structure of the flow separated from the model of a straight wing with point sources of disturbances (bulges) made on its surface are presented. The variations in the three-dimensional flow pattern are analyzed as functions of the bulge shapes and positions. It is found that the flow can be controlled by means of mounting the bulges downstream of the separation line, in the return flow region, since in this case they hinder large-scale vortex formation in the separation zone. The results obtained show that there is an intimate connection between the vortices and the separation zone as a whole. Impeding the vortex structure formation can result in considerable variations in the separation zone structure, up to its complete disappearance.  相似文献   

20.
Detached Eddy Simulations (DES) were carried out to analyze the influence of ground clearance and to estimate the unsteady wind loading on solar panels. A generic type of solar panel was considered at three different ground clearances. For the range of ground clearance values considered in the study, the results show that an increase in the clearance produces stronger vortex shedding fluctuations, higher shedding frequencies, and larger mean and unsteady wind loading. For the smallest ground clearance, an irregular vortex shedding was observed. The flow structures formed in the wake are analyzed using various indicators of turbulence characteristics including the vorticity and the λ2 criterion. The flow structures suggest a complex formation and subsequent shedding of vortices. The absence of regular vortex shedding at the smallest ground clearance and the presence of the same at the mid-ground clearance value suggests a reference for minimizing the unsteady wind loading of solar panels. Furthermore, the unsteady results reveal that the lower sections of the panel are more vulnerable to wind loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号