首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polycrystalline perovskite manganites La0.7−xEuxBa0.3MnO3(x=0.05, 0.1 and 0.15) were prepared by sol-gel method. The prepared samples remain single phase with a perovskite structure, revealed by X-ray diffraction. The structure refinement of La0.7−xEuxBa0.3MnO3(x=0.05, 0.1 and 0.15) samples was performed in the hexagonal setting of the Rc space group. The dependence of magnetization M on applied magnetic field H and temperature T was measured carefully near the Curie temperature TC for all the samples. With the increasing Eu content, both the unit cell volume and Curie temperature TC of 298 K has been detected with a maximum of magnetic entropy |ΔSMmax| for the La0.7−xEuxBa0.3MnO3 with x=0.15, reaching a value of 2.3 J/kg K when a magnetic field of 10 kOe was applied and the relative cooling power (RCP) is 46 J/kg. These results suggest that the material may be a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

2.
SrZnO2 phosphors have been synthesized by two new methods viz. carbonate decomposition at 1000 °C and combustion synthesis. Phosphors activated with Pb2+, Sm3+, Tb3+, Bi3+ and Pr3+ could be prepared in one step using the combustion synthesis. Characteristic emission and excitation were observed for Bi3+. For the remaining activators excitation spectra always contained a band at 283 nm. Presence of this band for all these different types of activators was interpreted as host sensitization.  相似文献   

3.
Nanocrystalline Al-doped nickel ferrite powders have been synthesized by sol–gel auto-ignition method and the effect of non-magnetic aluminum content on the structural and magnetic properties has been studied. The X-ray diffraction (XRD) revealed that the powders obtained are single phase with inverse spinel structure. The calculated grain sizes from XRD data have been verified using transmission electron microscopy (TEM). TEM photographs show that the powders consist of nanometer-sized grains. It was observed that the characteristic grain size decreases from 29 to 6 nm as the non-magnetic Al content increases, which was attributed to the influence of non-magnetic Al concentration on the grain size. Magnetic hysteresis loops were measured at room temperature with a maximum applied magnetic field of ≈1 T. As aluminum content increases, the measured magnetic hysteresis curves become more and more narrow and the saturation magnetization and remanent magnetization both decreased. The reduction of magnetization compared to bulk is a consequence of spin non-collinearity. Further reduction of magnetization with increase of aluminum content is caused by non-magnetic Al3+ ions and weakened interaction between sublattices. This, as well as the decrease in hysteresis was understood in terms of the decrease in particle size.  相似文献   

4.
The magnetic and transport properties in the perovskite Sr1−xLaxFe1−xMnxO3 have been explored. As x rises, the systemic ferromagnetism increases gradually and cluster-spin-glass state occurs in the low-temperature region. For 0.3?x?0.7, the ferromagnetic phase separation from the paramagnetic phase was observed from the results of electron-spin-resonance measurement. Although all samples show a semiconducting behavior, their transport properties are dominated by two different mechanisms, namely, the electronic transport of x?0.5 samples is realized by thermal activation but the variable-range hopping is applied in x?0.7 ones. The different transport mechanism can be understood from the Mn/Fe ions interaction.  相似文献   

5.
Cobalt-substituted ferrite nanoparticles were synthesized with a narrow size distribution using reverse micelles formed in the system water/AOT/isooctane. Fe:Co ratios of 3:1, 4:1, and 5:1 were used in the synthesis, obtaining cobalt-substituted ferrites (CoxFe3−xO4) and some indication of γ-Fe3O4 when 4:1 and 5:1 Fe:Co ratios were used. Inductively coupled plasma mass spectroscopy (ICP-MS) verified the presence of cobalt in all samples. Fourier transform infrared (FTIR) showed bands at ∼560 and ∼400 cm−1, characteristic of the metal–oxygen bond in ferrites. Transmission electron microscopy showed that the number median diameter of the particles was ∼3 nm with a geometric deviation of ∼0.2. X-ray diffraction (XRD) confirmed the inverse spinel structure typical of ferrites with a lattice parameter of a=8.388 Å for Co0.61Fe0.39O4, which is near that of CoFe2O4 (a=8.394 Å). Magnetic properties were determined using a superconducting quantum interference device (SQUID). Coercivities higher than 8 kOe were observed at 5 K, whereas at 300 K the particles showed superparamagnetic behavior. The anisotropy constant was determined based on the Debye model for a magnetic dipole in an oscillating field and an expression relating χ′ and the temperature of the in-phase susceptibility peak. Anisotropy constant values in the order of ∼106 erg/cm3 were determined using the Debye model, whereas anisotropy constants in the order of ∼107 erg/cm3 were calculated assuming Ωτ=1 at the temperature peak of the in-phase component of the susceptibility curve as commonly done in the literature. Our analysis demonstrates that the assumption Ωτ=1 at the temperature peak of χ′ is rigorously incorrect.  相似文献   

6.
Changyu Shen  Yi Yang  Huajun Feng 《Optik》2010,121(1):29-32
The shift of the emission band to longer wavelength (yellow-orange) of the Ba2MgSi2−xAlxO7: 0.1Eu2+ phosphor under the 350-450 nm excitation range has been achieved by adding the codoping element (Mn2+) in the host. The single-host silicate phosphor for WLED, Ba2MgSi2−xAlxO7: 0.1Eu2+, 0.1Mn2+ was prepared by high-temperature solid-state reaction. It was found experimentally that, its three-color emission peaks are situated at 623, 501 and 438 nm, respectively, under excitation of 350-450 nm irradiation. The emission peaks at 438 and 501 nm originate from the transition 5d to 4f of Eu2+ ions that occupy the two Ba2+ sites in the crystal of Ba2MgSi2−x AlxO7, while the 623 nm emission is attributed to the energy transfer from Eu2+ ions to Mn2+ ions. The white light can be obtained by mixing the three emission colors of blue (438 nm), green (501 nm) and red (623 nm) in the single host. When the concentrations of the Al3+, Eu2+ and Mn2+ ions were 0.4, 0.1 and 0.1 mol, respectively, the sample presented intense white emission. The addition of Al ion to the host leads to a substantial change of intensity ratio between blue and green emissions. White light could be obtained by combining this phosphor with 405 nm light-emitting diodes. The near-ultraviolet GaN-based Ba2MgSi1.7 Al0.3O7: 0.1Eu2+, 0.1Mn2+ LED achieves good color rendering of over 85.  相似文献   

7.
Barium hexaferrite powders with manganese substitution were prepared by mechanosynthesis. The structural and magnetic properties were characterized by X-ray diffractometer and vibration sample magnetometer, respectively. XRD patterns were refined by Rietveld method. Preferential site occupation of manganese ion was investigated by room temperature (RT) Mössbauer measurements. XRD results showed a single-phase barium hexaferrite with some residual hematite. Crystallite size was observed to decrease with substitution amount. Lower saturation magnetization and increased coercivity is observed in substituted samples. RT Mössbauer measurements showed that manganese ions preferentially occupy 12k, 4f2, and 2a sites.  相似文献   

8.
A series of rare earth ternary compounds of Tb1−xEux(TTA)3Dipy (HTTA=thenoyltrifluoroacetone, Dipy=2,2′-dipyridyl) have been synthesized, and the characteristics of the compounds have been performed by DTA-TG, IR, UV and fluorescence spectroscopy. Photoluminescence measurements indicated that the complexes of Eu(III) emit strong red luminescence under UV radiation. IR spectra suggest that complexes have been successfully synthesized, and TG curves indicate that the complexes are stable up to a temperature of about 220 °C. The Eu complex was blended with poly(N-vinylcarbazole) (PVK) and spin coated into films, and electroluminescence devices with the structure of Indium Tin Oxide (ITO)/PVK:Tb1−xEux(TTA)3Dipy/BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)/aluminum quinoline (AlQ)/Al were fabricated, the luminescence of Eu3+ complexes enhances after doping with Tb3+. Therefore, it may be an effective method to improve the EL intensity of the lanthanide complex.  相似文献   

9.
Ca1−xBixNb1−xCrxO3 (x=0.01-0.5) ceramic powders were synthesized using the sol-gel process. The single-phase solids can be presented at x=0.01 and 0.03. The coexistence of orthorhombic perovskite and the secondary phase of BiCrO3 was verified, as presented for x=0.05-0.5. Grains with a micro-cube topography were obtained for x=0.3-0.5. The average grain size is about 0.4 and 1.1 μm for x=0.3 and 0.5, respectively. The highest dielectric constant peak was measured at around 55 °C for x=0.5 and at 75 °C for x=0.3. The high dielectric constant was caused by the formation of barrier layers at the interface of the bi-phase mixed ceramics. Space charge polarization contributed to the observed behavior.  相似文献   

10.
We report electric and magnetic properties of oxygen deficient Ba5−xLaxNb4−xTixO15−δ phases, which have been prepared by solid-state reaction method followed by a controlled reduction process under hydrogen atmosphere. The extra electrons added by the formation of the oxygen vacancies (δ) introduce localized spins and the magnetic susceptibility can be described by a temperature-independent contribution and a Curie-Weiss term associated to the Ti3+ ion formation. Besides, the experimental resistivity (ρ) data of these four reduced compounds are well described in a wide temperature range with the equation , which suggests the presence of small polarons in the system. Although, all samples present electrical insulating behavior, the electrical resistivity decreases four orders of magnitude for intermediate x values. We interpreted this fact as a consequence of the mix between the localized bands of the Nb and Ti ions, which favors the promotion of carriers due to reduction of the band gap.  相似文献   

11.
12.
The short- and long-range order correlations of the crystal structure in the distorted perovskites La1−xSrxCoO3 and La1−xBaxCoO3 (0.0?x?0.5) have been studied by the neutron powder diffraction (NPD) and the Co K-edge X-ray absorption spectroscopy (XAS) measurements. The results of XAS and NPD indicate a local distortion around the Co3+ ions in LaCoO3 at room temperature. The substitution of the La3+ ions by the Sr2+(Ba2+) ions leads to a gradual increase of the Co-O-Co angle and is accompanied by an increase of the mean square relative displacement (MSRD) of the Co-O bond. These results correlate with an increase of the oxygen amplitude vibration in the direction perpendicular to the Co-O bond. The possible explanation of the observed changes of the crystal and electronic structures in the above-mentioned cobaltites is discussed.  相似文献   

13.
A series of the double-doping samples La(2+x)/3Sr(1−4x)/3Mn1−xCrxO3 (0?x?0.25) with the Mn3+/Mn4+ ratio fixed at 2:1 have been fabricated. The structural, magnetic, transport properties and Raman spectroscopy have been investigated, and no apparent crystal structure change is introduced by Cr doping up to x=0.25. But the Curie temperature TC and metal-insulator transition temperature TMI are strongly affected by Cr substitution. The room temperature Raman spectra start exhibiting some new features following the increasing concentration of Cr substitutions. Moreover, it is worth noting that the frequency of the A1g phonon mode can also be well correlated with the A-site mismatch effect (σ2), which is influenced mainly by the variety of the Sr content.  相似文献   

14.
Submicron-sized SrFe12−xAlxO19 (x=1.3) was formed in glass-ceramic matrix using controlled thermocrystallization of the SrO–Fe2O3–Al2O3–B2O3 glass and the hexaferrite powder was obtained by removing the matrix phases. The samples were characterized by X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray (EDX) analysis and magnetization measurements. The glass-ceramic material exhibits very high coercivity value up to 10.18 kOe which approaches a theoretically estimated maximum value for the compound. The hexaferrite powder consists of well faceted single crystals, which adopt the shape of a truncated hexagonal bipyramid. The powder saturation magnetization value is close to the theoretically estimated one for bulk material. Crystal structure of the powder was refined by Rietveld method and distribution of Al atoms on Fe sites was determined. Al atoms occupy 41% of 2a sites, 14% of 12k sites and 5% of 4e(1/2) sites, while 4f sites are not affected.  相似文献   

15.
Density functional theory calculations by using both generalized gradient approximation (GGA) method and the GGA with considering strong correlation effect (GGA+U) for various Eu concentrations x (=0.00, 0.25, 0.50, and 0.75). It is found that after the Europium incorporation, a new localized band appears between the valence and conduction bands, which corresponds to the majority spin of Eu-4f states, the strong correlation effects is very important for the 4f orbit of the Eu atom in ZnEuS. We find that Zn1−xEuxS exhibits a half-metallic characteristic, and the ferromagnetic state is more favorable in energy than the antiferromagnetic state. Structural properties are determined from the total energy calculations, and we discuss the electronic structures, total and partial densities of states and local moments.  相似文献   

16.
Ba5−xLaxNb4−xTixO15 solid solutions were prepared by solid state reaction method. Structural analysis for the stoichiometric phases was performed for x=0, 1, 2 and 3 by Rietveld analysis of neutron powder diffraction data. The x=0, 1 and 2 members could be refined in the space group P-3m1 (stacking sequence chhcc, polytypoid 5 H). There is a decrease in cell volume as x increases. La3+ occupies preferentially the A2 site (Wyckoff site 2d) and Ti4+ the B2 site (Wyckoff site 2c). As x increases there is an increase of the global instability index (GII) (which is a measure of the extent to which the BVS rule is violated over the whole structure) indicating the presence of intrinsic strains large enough to cause instability at room temperature. This strain is responsible for a structural change for the member with x=3, which could be refined in the space group P-3c1 (stacking sequence (chhcc)2, polytypoid 2×5H=10H). This change in space group is associated with a cooperative rotation of (Nb/Ti)O6 octahedra around the c-axis, necessary to accommodate the smaller La3+ ion in the cuboctahedral cavity.  相似文献   

17.
The properties of the grain boundaries (GBs) are of significant importance in high-Tc cuprates. Most large scale applications of cuprate superconductors involve usage of sintered compounds. The critical current density and the ability to trap high magnetic flux inside the sample depend largely on the quality of the GBs. Zn has the ability to pin vortices but it also degrades superconductivity. In this study we have investigated the effect of Zn impurity on the intergrain coupling properties in high-quality La2−xSrxCu1−yZnyO4 sintered samples with different hole concentrations, p (≡x), over a wide range of Zn contents (y) using field-dependent AC susceptibility (ACS) measurements. The ACS results enabled us to determine the superconducting transition temperature Tc, and the temperature Tgcp, at which the randomly oriented superconducting grains become coupled as a function of hole and disorder contents. We have analyzed the behavior of the GBs from the systematic evolution of the values of Tgcp(py), Tc(py), and from the contribution to the field-dependent ACS signal coming from the intergrain shielding current. Zn suppresses both Tc and Tgcp in a similar fashion. The hole content and the carrier localization due to Zn substitution seem to have significant effect on the coupling properties of the GBs. We have discussed the possible implications of these findings in detail in this article.  相似文献   

18.
Mg0.7Zn0.3SmxFe2−xO4 ferrites were prepared by the solid-state reaction method and were characterized by X-ray diffraction and magnetization measurements. A single spinel phase was obtained in the range 0.00?x?0.030.00?x?0.03. The lattice parameter was found to increase at x=0.01x=0.01 and then decreases up to x=0.03x=0.03, which may indicate a distortion in the spinel lattice. The saturation magnetization was found to decrease with the increase in x up to 0.04, due to the replacement of the Fe3+ ions by the Sm3+ ions.  相似文献   

19.
Gd3+-substituted micro-octahedron composites (FexCo1−x/CoyGdzFe3−yzO4) in which the Fe-Co alloy has either a bcc or fcc structure and the oxide is a spinel phase were fabricated by the hydrothermal method. The X-ray diffraction (XRD) patterns indicate that the as-synthesized Gd3+-substituted micro-octahedron composites are well crystallized. Scanning electron microscopy (SEM) images show that the final product consists of larger numbers of micro-octahedrons with the size ranging from 1.3 to 5 μm, and the size of products are increased with increasing the concentration of KOH. The effect of the Co2+/Fe2+ ratio (0?Co2+/Fe2+?1) and substitution Fe3+ ions by Gd3+ ions on structure, magnetic properties of the micro-octahedrons composites were investigated, and a possible growth mechanism is suggested to explain the formation of micro-octahedrons composites. The magnetic properties of the structure show the maximal saturation magnetization (107 emu/g) and the maximal coercivity (1192 Oe) detected by a vibrating sample magnetometer.  相似文献   

20.
Nanocrystalline spinel ferrite thin films of CoxFe3−xO4 (x=0.3x=0.3, 0.5, 0.8, and 1.0) have been prepared by RF sputtering on quartz substrate without a buffer layer at room temperature and annealed at the temperature range from 200 to 600 °C in air. The as-sputtered films exhibit the preferred orientation and the high magnetization and coercivity. After annealing, the preferred orientations become poor, but the magnetization and coercivity increase. The sample with a magnetization of 455 emu/cm3, a coercivity of 2.8 kOe, a remanence ratio of 0.72, and a maximum energy product of 2.4 MGOe has been obtained. The influence of Co ions and annealing temperature on the magnetic properties has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号