首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na-doped ZnO nanowires with an average diameter of ∼40 nm have been fabricated by a thermal decomposition route at temperature around 400 °C. Their properties have been investigated using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), UV-visible spectroscopy, Raman spectra, and photoluminescence (PL) spectroscopy. Room temperature photoluminescence (RT-PL) showed that the as-synthesized ZnO samples exhibited strong visible emission with a major peak at 420 nm. Furthermore, intensity of the visible emission increased and then decreased with increase in Na concentration. The improvement of visible emission at 420 nm in the Na-doped ZnO samples should be a result of the surface defects increased by doping of Na in zinc oxide. In addition, photocatalytic studies indicated that these nanomaterials showed good photocatalytic performance for organic pollutants in water.  相似文献   

2.
Nano-crystalline ZnO particles were synthesized using alcoholic solutions of zinc acetate dihydrate through a colloidal process. Five types of capping agents: 3-aminopropyl trimethoxysilane (Am), tetraethyl orthosilicate (TEOS), mercaptosuccinic acid (Ms), 3-mercaptopropyl trimethoxysilane (Mp) and polyvinylpyrrolidone (Pv) were added at the first ZnO precipitation time (first PPT) to limit the particle growth. The first three capping agents effectively capped the ZnO nanoparticles and limited the growth of the particles, while the last two capping agents caused agglomeration or larger clusters in the solutions. Particles synthesized were in the size range of 10-30 nm after capping, and grew to 60 and 100 nm in 3 and 6 weeks, respectively, during storage at ambient conditions. Refluxing time was found to only affect the first PPT time. Washing by ethanol and slow drying were very important in converting Zn(OH)2 into ZnO. XRD analyses revealed single phase ZnO Wurtzite crystal structure. Photoluminescence (PL) spectra showed high-intensity in UV emission and very low intensity in the visible emission, which indicates a good surface morphology of the ZnO nanoparticles with little surface defects. Optical absorption spectra showed a blue shift by the capped ZnO due to the quantum confinement effect by the single crystal size of 5-6 nm as analysed by TEM. Capping effectiveness of each agent is discussed through possible capping mechanism and chemical reaction of each capping agent. This synthesis process is a low cost, high purity, easy to control method using only bio-compatible materials.  相似文献   

3.
Fluorescent ZnO nanoparticles have been prepared by mixing aqueous solutions of zinc nitrate and ammonium carbonate in the presence of a non-ionic surfactant, Tween-80. Increased concentrations of the surfactant were found to affect both the morphology and purity of the synthesized ZnO nanoparticles. XRD, SEM, FTIR, TGA and Confocal laser scanning microscopy were employed to characterize the as-prepared samples. ZnO nanoparticles ranging in particle size from 11 to 15 nm were formed at the reaction temperature of 70-80 °C. The results of FTIR and TGA analysis indicate the self assembly of Tween molecules on the surface of ZnO nanoparticles. A bright emission in the visible region from the as-prepared ZnO nanoparticles was recorded using confocal laser scanning microscopy. This property of the as-prepared nanoparticles may find potential application in bio-imaging.  相似文献   

4.
In the present paper, well-dispersed ZnO nano-, submicro- and microrods with hexagonal structure were synthesized by a simple low temperature hydrothermal process from zinc nitrate hexahydrate without using any additional surfactant, organic solvent or catalytic agent. The phase and structural analysis were carried out by X-ray diffraction (XRD), the morphological analysis was carried out by field emission scanning electron microscopy (FESEM) and the optical property was characterized by room-temperature photoluminescence (PL) spectroscopy. The results revealed the high crystal quality of ZnO powder with hexagonal (wurtzite-type) crystal structure and the formation of well-dispersed ZnO nano-, submicro- and microrods with diameters of about 50, 200 and 500 nm, and lengths of 300 nm, 1 μm and 2 μm, respectively, on a large-scale just using the different temperatures. Room-temperature PL spectrum from the ZnO nanorods reveals a strong UV emission peak at about 360 nm and no green emission band at ∼530 nm. The strong UV photoluminescence indicates the good crystallization quality of the ZnO nanorods. Room-temperature PL spectra from the ZnO submicro- and microrods reveal a weak UV emission peak at ∼400 nm and a very strong visible green emission at 530 nm, that is ascribed to the transition between VoZni and valence band.  相似文献   

5.
The synthesis of nanocrystalline zinc oxide (ZnO) in the presence of poly-vinylpyrrolidone (PVP) as capping agent through hydrothermal process, and their structural and optical properties were reported. PVP modified ZnO nanorods grown hydrothermally involve a heterogeneous chemical reaction in the presence of water as a solvent medium and reaction temperature of 100 °C for 7 h in a hot air oven and calcined in air at 500 °C for 3 h. Crystal structure, phase purity and average crystallite size of ZnO were studied by powder X-ray diffraction (PXRD). The strain associated with the as-prepared samples due to lattice deformation was estimated by Williamson–Hall (W–H) analysis. Structural morphology was investigated using scanning electron microscopy (SEM), which showed the formation of nanorods with PVP capping. The growth mechanism of ZnO nanorods and its capping by poly-vinylpyrrolidone are briefly discussed through FT-IR adsorption spectra. The optical behavior of the samples was analyzed through photoluminescence (PL) spectroscopy with an emission spectra in visible region ∼418 nm indicate the applicability of using it as a transport material in solar cells.  相似文献   

6.
Vanadium-doped Zn2SiO4 particles embedded in silica host matrix were prepared by a simple solid-phase reaction under natural atmosphere at 1200 °C after the incorporation of ZnO:V nanoparticles in silica monolith using sol-gel method with supercritical drying of ethyl alcohol in two steps. The obtained sample, exhibits a strong PL band in the visible range at 540 nm and two thin emission lines in the UV range at 394 and 396 nm under intensive power excitation. Photoluminescence excitation (PLE) measurements show different origins of the emission bands. It is suggested that radiative defects attributed to vanadium in the interfaces between Zn2SiO4 particles and SiO2 host matrix resulting from heat treatment and zinc oxide excitonic emissions, were responsible for theses luminescence bands.  相似文献   

7.
Novel flowerlike ZnO structures have been rapidly synthesized on (1 0 0)-Si substrates via thermolysis of zinc acetate in air ambient without any catalyst. The obtained ZnO products exhibit well-defined flowerlike morphologies consisting of multilayer petal crystals with tapering feature. High-resolution transmission electron microscope (HRTEM) and corresponding selected area electron diffraction pattern (SAED) reveal that these petal crystals are single crystal in nature and preferentially oriented in the c-axis direction. Room-temperature photoluminescence (PL) spectra show that all the samples exhibit prominent UV emissions around 376.8 nm and very weak visible emission peaks, which demonstrates that there are few deep-level defects in the single crystal petals of the flowerlike ZnO structures. The growth mechanism of the as-synthesized flowerlike ZnO structures was also discussed.  相似文献   

8.
Zinc oxide (ZnO) and lead sulphide (PbS) nanoparticles separately synthesized by a precipitation method were combined by an ex situ route to prepare ZnO-PbS nanocomposites with different molar ratios of ZnO and PbS. The structure and morphology of the ZnO, PbS and ZnO-PbS samples were analyzed with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A UV-vis spectrophotometer was used to collect the absorption and 325 nm He-Cd and 488 nm Ar lasers were used to collect the photoluminescence data from the samples. ZnO nanoparticles showed a broad and stable emission peak at ∼570 nm, while a strongly quantum confined emission from PbS nanoparticles was detected at ∼1344-1486 nm. The ZnO-PbS nanocomposites exhibited dual emission in the visible and near-infrared (NIR) regions that is associated with defects and recombination of excitonic centres in the ZnO and PbS nanoparticles, respectively. The PL intensity of the visible emission from the ZnO-PbS nanocomposite was shown to increase when the ZnO to PbS molar ratio was 5:1 and the emission was almost quenched at molar ratios of 1:1 and 1:5. For different molar ratios of ZnO to PbS, the PL intensity of the NIR emission from the ZnO-PbS nanocomposites was more intense than that of PbS nanoparticles.  相似文献   

9.
Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H2O2. The effect of surfactants on the optical and structure of ZnO2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H2O2, and H2O2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO2 nanoparticles prepared with and without surfactants show a characteristic ZnO2 absorption at 435-445 cm−1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm−1.  相似文献   

10.
The presence of surfactants polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), sodium hexameta polyphosphate (SHMP) and tri-octyl phosphine oxide (TOPO) on the surface of Ni2+ doped ZnS (ZnS:Ni2+) nanoparticles resulted variation in their optical properties. The optical properties of each surfactant-capped ZnS:Ni2+ nanoparticles were investigated using UV–visible (UV–Vis) absorption and photoluminescence (PL) techniques. The absorption spectra and fluorescent emission spectra showed a significant blue shift compared to that of the bulk zinc sulfide. The effect of the optical properties in colloidal form (wet) and dry samples were investigated. Enhanced PL emission was observed for the dry samples at 80 °C. Thermal properties of the ZnS:Ni2+ was also studied using thermo gravimetric-differential thermal analysis (TG-DTA), Fourier transform infra-red spectrometer (FT-IR) and X-ray diffraction (XRD). The results are presented and discussed.  相似文献   

11.
Un-doped and Mn-doped ZnO nanoparticles were successfully synthesized in an ethanolic solution by using a sol-gel method. Material properties of the samples dependence on preparation conditions and Mn concentrations were investigated while other parameters were controlled to ensure reproducibility. It was observed that the structural properties, particle size, band gap, photoluminescence intensity and wavelength of maximum intensity were influenced by the amount of Mn ions present in the precursor. The XRD spectra for ZnO nanoparticles show the entire peaks corresponding to the various planes of wurtzite ZnO, indicating a single phase. The diffraction peaks of doped samples are slightly shifted to lower angles with an increase in the Mn ion concentration, signifying the expansion of the lattice constants and increase in the band gap of ZnO. All the samples show the absorption in the visible region. The absorbance spectra show that the excitonic absorption peak shifts towards the lower wavelength side with the Mn-doped ZnO nanoparticles. The PL spectra of undoped ZnO consist of UV emission at 388 nm and broad visible emission at 560 nm with varying relative peak intensities. The doping of ZnO with Mn quenches significantly the green emission while UV luminescence is slightly affected.  相似文献   

12.
In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 °C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 °C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 °C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50–60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25–50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.  相似文献   

13.
The luminescence properties of zinc oxide (ZnO) nanocrystals grown from solution are reported. The ZnO nanocrystals were characterized by scanning electron microscopy, X-ray diffraction, cathodo- and photoluminescence (PL) spectroscopy. The ZnO nanocrystals have the same regular cone form with the average sizes of 100-500 nm. Apart from the near-band-edge emission around 381 nm and a weak yellow-orange band around 560-580 nm at 300 K, the PL spectra of the as-prepared ZnO nanocrystals under high-power laser excitation also showed a strong defect-induced violet emission peak in the range of 400 nm. The violet band intensity exhibits superlinear excitation power dependence while the UV emission intensity is saturated at high excitation laser power. With temperature raising the violet peak redshifts and its intensity increases displaying unconventional negative thermal quenching behavior, whereas intensity of the UV and yellow-orange bands decreases. The origin of the observed emission bands is discussed.  相似文献   

14.
ZnO nanoparticles and ZnO encapsulated with polyethylene glycol (PEG) was synthesized using zinc acetate as a precursor at low temperature and characterized by different techniques. The influence of the types of solvent, synthesis parameters, and PEG encapsulation on the crystallization, the surface morphology, and the luminescent properties of ZnO nanoparticles prepared by the sol–gel process were investigated. The influence of different addition molar masses of the PEG during the synthesis on the ZnO emission peaks was systematically monitored. The crystallinity, the surface morphology, and the photoluminescence (PL) properties of ZnO depended highly on the synthesis process and PEG encapsulation. X-ray diffraction (XRD) spectra of ZnO nanoparticles show that all the peaks corresponding to the various planes of wurtzite ZnO indicate the formation of a single phase. The absorption edges of these ZnO nanoparticles are shifted by additions of the PEG polymer. The photoluminescence (PL) characterization of the ZnO nanostructures exhibited a broad emission in the visible range with maximum peak at 450 and/or 560 nm.  相似文献   

15.
Hierarchical zinc oxide (ZnO) micro/nanostructured thin films were grown onto as-prepared and different annealed ZnO seed layer films by a simple two step chemical process. A cost effective successive ionic layer adsorption and reaction (SILAR) method was employed to grow the seed layer films at optimal temperature (80 °C) and secondly, different hierarchical based ZnO structured thin films were deposited over the seed layered films by chemical bath deposition (CBD). The influence of seed layer on the structural, surface morphological, optical and wettability behavior of the ZnO thin films were systematically investigated. The XRD analysis confirms the high crystalline nature of both the seed layer and corresponding ZnO micro/nanostructured films with a perfect hexagonal structure oriented along (0 0 2) direction. The surface morphology revels a complex and orientated hierarchical based ZnO structured films with diverse shapes from plates to hexagonal rod-like crystal to tube-like structure and even much more complex needle-like shapes during secondary nucleation, by changing the seed layer conditions. The water contact angle (WCA) measurements on hierarchical ZnO structured films are completely examined to study its surface wettability behavior for its suitability in future self-cleaning application. Photoluminescence (PL) spectra of the ZnO structured film exhibit UV and visible emissions in the range of 420-500 nm. The present approach demonstrates its potential for low-temperature, large-scale, controlled synthesis of crystalline hierarchical ZnO nanostructures films.  相似文献   

16.
Novel covalently surface-modified zinc oxide (ZnO) nanoparticles (NP) (ZHIE) were successfully prepared, which have organic chains composed of hydrophilic amide and urethane linkages, and terminal amino groups on the surfaces, using zinc acetate monohydrate. FTIR spectroscopy, X-ray analysis and TEM observation suggested that the resultant ZHIE NPs have the mean sizes of about 10 nm in diameters, the organic chains linking the amino groups in the terminals and wurtzite crystal structure. UV-vis absorption spectrum of the ZHIE NPs in methanol showed maximum absorption band at 348 nm, supporting the TEM observations. Photoluminescent spectrum measurements depicted that the ZHIE NPs show broad visible emission band on the basis of trapped-electron emission. Cytotoxicity and phagocytosis assays suggested that the ZHIE NPs are noncytotoxic, and the ZHIE-labeled zymosan particles derived by conjugation of the ZHIE NPs with zymosan are internalized into the cells and generate fluorescence based on the ZHIE NPs.  相似文献   

17.
Lithium (Li) and magnesium (Mg) co-doped zinc oxide (ZnO) thin films were deposited by sol–gel method using spin coating technique. The films were deposited on glass substrates and annealed at different temperatures. The effects of annealing temperature on the structural, optical and electrical properties of the deposited films were investigated using X-ray diffraction (XRD), Ultraviolet–Visible absorption spectra (UV–VIS), photoluminescence spectra (PL), X-ray photo electron spectroscopy (XPS) and Hall measurements. XRD patterns indicated that the deposited films had a polycrystalline hexagonal wurtzite structure with preferred (0 0 0 2) orientation. All films were found to exhibit a good transparency in the visible range. Analysis of the absorption edge revealed that the optical band gap energies of the films annealed at different temperatures varies between 3.49 eV and 3.69 eV. Room temperature PL spectra of the deposited films annealed at various temperatures consist of a near band edge emission and visible emission due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn) which are generated during annealing process. The influence of annealing temperature on the chemical state of the dopants in the film was analysed by XPS spectra. Ion beam analysis (Rutherford back scattering) experiments were performed to evaluate the content of Li and Mg in the films. Hall measurements confirmed the p-type nature of the deposited films.  相似文献   

18.
This article presents the investigation on the large-scale synthesis of ZnO microrods with a simple low temperature hydrothermal method without using surfactants, organic solvents, or catalytic reagents. The synthesized ZnO powder is characterized with different techniques. The X-ray diffraction study reveals the excellent crystal quality of the ZnO product possessing the hexagonal (wurtzite-type) crystal structure. The scanning electron microscope observation confirms the formation of six faceted prismatic hexagonal ZnO microrods with the aspect ratio of 10. It also reveals that the ZnO microrods grow along the (0 0 0 1) direction and finally emerge with a sharp tip because of the existence of polar faces. The UV–vis spectrum shows a sharp absorption peak centered at 370 nm, which is in a good agreement with the equivalent bulk band gap value. The strong UV absorption peak implies the excellent crystal quality of the synthesized ZnO microrods. Room temperature photoluminescence spectroscopic study of the ZnO microrods with different excitation wavelengths reveals a strong band edge emission peak centered at 398 nm and a defect related visible blue emission peak at 460 nm. The decrease in photoluminescence intensity with negligible red shift in peak position is observed with increasing excitation wavelength.  相似文献   

19.
在常压下,以ZnCl2和NaOH为原料,不添加任何表面活性剂等有机物质,研究了用60℃恒温搅拌的湿化学法制备花状纳米ZnO。XRD、SEM和TEM分析结果表明:所得纳米ZnO是由平均直径约为80nm左右的纳米棒组成的花状结构,其平均长度可达1μm;利用紫外-可见分光光度计测试了光吸收性能,发现ZnO产物对300~380nm波长范围的光有强的吸收性;室温光致发光光谱显示:产物在462nm和620nm处分别出现了蓝光发射和较强较宽的红光发射。  相似文献   

20.
章建辉  韩季刚 《物理学报》2015,64(9):97702-097702
氧化锌(ZnO) 纳米材料因其在UV 激光器、发光二极管、太阳能电池、稀磁半导体、生物荧光标示、靶向药物等领域中的广泛应用而成为最热门的研究课题之一. 调节和优化ZnO 纳米结构的性质是ZnO 的实际应用迫切所需. 在此, 通过发展聚乙烯吡咯烷酮导向结晶法、微波加热强制水解法、表面活性剂后处理法, 成功地制备出了尺寸、表面电荷或成分可调的球、半球、棒、管、T 型管、三脚架、片、齿轮、两层、多层、带盖罐子、碗等一系列ZnO 纳米结构. 通过简单地改变ZnO 纳米粒子的尺寸、形貌和表面电荷或成分, 有效地调控ZnO 本身的发光强度和位置, 并近90 倍地增强了荧光素染料的荧光强度; 诱使了强度可调的室温铁磁性; 实现了对ZnO纳米颗粒的细胞毒性的系统性调控.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号