首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reported on the recombination processes determined by the release of electrons from defects connected with the dosimetric 430 K thermostimulated luminescence (TSL) peak as well as with the 260 K TSL peak. These TSL peaks appear in thermochemically reduced α-Al2O3 crystals containing hydrogen and emission of these TSL peaks corresponds to luminescence of the F-center. The X-ray exposure or UV excitation in the absorption band of F-centers at 6.0 eV of reduced α-Al2O3 crystals doped with acceptor impurities results in the appearance of a broad anisotropic complex absorption band in the spectral region 2.5–3.5 eV and in the appearance of a predominant TSL peak at 430 K. Above 430 K the above-mentioned broad absorption band disappears. Optical bleaching of the 2.5–3.5 eV band is accompanied by the disappearance of the 430 K TSL peak and results in F-center emission. The X-ray or UV excitation of reduced α-Al2O3 crystals with donor-type impurities results in the appearance of an anisotropic absorption band at 4.2 eV and the appearance of a dominant TSL peak at 260 K. Above 260 K the 4.2 eV absorption disappears and photostimulated luminescence (PSL) of the F-center recombination luminescence in the 4.2 eV region is no longer observed. Optical bleaching of the 4.2 eV absorption band is accompanied by the disappearance of the 260 K TSL peak. The successful use of reduced α-Al2O3 in dosimetry needs the optimization of the concentration of all components (acceptors, hydrogen, intrinsic defects) involved in the thermo- and photostimulated processes.  相似文献   

2.
Photoluminescence of undoped and Cr3+-doped β-Ga2O3 was investigated. The transparent, undoped β-Ga2O3 film was successfully prepared by thermal conversion from GaOOH. The film exhibited predominant green luminescence in response to ultraviolet light excitation at 250 nm. This luminescence behavior, which was proposed to result from the oxygen defect centers, was used in examining excitation and emission mechanisms for Cr3+ ions doped in β-Ga2O3. It was found that red luminescence of Cr3+ surpasses green luminescence of the host lattice, as evidenced by the dependence of the spectral structure on the Cr3+ concentration. The excitation of Cr3+ was then suggested to be caused by the energy transfer from Ga3+O6 octahedra present in the monoclinic β-Ga2O3 lattice.  相似文献   

3.
At 4.2-350 K, the steady-state and time-resolved emission and excitation spectra and luminescence decay kinetics were studied under excitation in the 2.5-15 eV energy range for the undoped and Ce3+-doped Lu3Al5O12 (LuAG) single-crystalline films grown by liquid phase epitaxy method from the PbO-based flux. The spectral bands arising from the single Pb2+-based centres were identified. The processes of energy transfer from the host lattice to Pb2+ and Ce3+ ions and from Pb2+ to Ce3+ ions were investigated. Competition between Pb2+ and Ce3+ ions in the processes of energy transfer from the LuAG crystal lattice was evidenced especially in the exciton absorption region. Due to overlap of the 3.61 eV emission band of Pb2+ centres with the 3.6 eV absorption band of Ce3+ centres, an effective nonradiative energy transfer from Pb2+ ions to Ce3+ ions takes place, resulting in the appearance of slower component in the luminescence decay kinetics of Ce3+ centres and decrease of the Ce3+-related luminescence intensity.  相似文献   

4.
Detailed spectroscopic studies of the triply doped KGd(WO4)2:Ho3+/Yb3+/Tm3+ single crystals (which exhibit multicolor up-conversion fluorescence) are reported for the first time. The absorption spectra of crystals were measured at 10 and 300 K; the room temperature luminescence spectra were excited at 980 nm wavelength. The dependence of the intensity of luminescence on the excitation power for three different concentration of Ho3+, Yb3+ and Tm3+ ions was investigated. Efficient green and red up-converted luminescence of Ho3+ ions and weak blue up-conversion luminescence of Tm3+ ions were observed in spectra. The red emission of Ho3+ ions is more intensive than their green emission. Dependence of the up-conversion luminescence intensity on the excitation power and impurities concentration was also studied; the number of phonon needed for efficient up-conversion was determined for each case. All possible energy transfer processes between different pairs of the impurity ions' energy levels are also discussed.  相似文献   

5.
Yttrium borate doped with uranium was prepared by mixing and heating yttrium oxide obtained through oxalate precipitation route, boric acid and requisite amount of nuclear-grade uranium oxide at high temperature. Photoluminescence (PL), thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) studies were carried out on gamma-irradiated doped/undoped yttrium borate samples in the temperature range 300-600 K. TSL studies showed the presence of two glow peaks at 414 and 471 K. PL studies along with lifetime decay investigation suggested uranium goes in the matrix as UO22+. EPR studies showed the presence of O2radical ion along with electron trapped in defect centres, which might have been produced for charge compensation. Apart from this, CO2 radical was also observed in the system having its origin from residual oxalate ion. Temperature dependence EPR studies of the observed radical confirmed the involvement of the CO2 and dioxide radical ion in the observed glow peaks. By correlating the TSL, PL and ESR data, probable mechanism is proposed for the observed TSL glow in the system.  相似文献   

6.
By introducing the Y3+ into Sr2P2O7:Eu2+, we successfully prepared a kind of new phosphor with blue long-lasting phosphorescence by the high-temperature solid-state reaction method. In this paper, the properties of Sr2P2O7:Eu2+,Y3+ were investigated utilizing XRD, photoluminescence, luminescence decay, long-lasting phosphorescence and thermoluminescence (TL) spectra. The phosphor emitted blue light that was related to the 4f65d1-8S7/2 transition of Eu2+. The bright blue phosphorescence could be observed by naked eyes even 8 h after the excitation source was removed. Two TL peaks at 317 and 378 K related to two types of defects appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.61 and 0.66 eV. Also, the mechanism of LLP was discussed in this report.  相似文献   

7.
Spectral-kinetic study of Pr3+ luminescence has been performed for LiLuF4:Pr(0.1 mol%) single crystal upon the excitation within 5-12 eV range at T=8 K. The fine-structure of Pr3+ 4f 2→4f 5d excitation spectra is shown for LiLuF4:Pr(0.1 mol%) to be affected by the efficient absorption transitions of Pr3+ ions into 4f 5d involving 4f 1 core in the ground state. Favourable conditions have been revealed in LiLuF4:Pr(0.1 mol%) for the transformation of UV-VUV excitation quanta into the visible range. Lightly doped LiLuF4:Pr crystals are considered as the promising luminescent materials possessing the efficient Pr3+3P0 visible emission upon UV-VUV excitation. The mechanism of energy transfer between Lu3+ host ion and Pr3+ impurity is discussed.  相似文献   

8.
Thermoluminescence properties of barium strontium mixed sulfate have been studied by irradiation with Argon ions. The sample was recrystallized by chemical co-precipitation techniques using H2SO4. The X-ray diffraction study of prepared sample suggests the orthorhombic structure with average grain size of 60 nm. The samples were irradiated with 1.2 MeV Argon ions at fluences varying between 1011 and 1015 ions/cm2. The argon ions penetrate to the depth of 1.89 μm and lose their energy mainly via electronic stopping. Due to ion irradiation, a large number of defects in the sample are formed. Thermally stimulated luminescence (TSL) glow curves of ion irradiated Ba0.12Sr0.88SO4 phosphor exhibit broad peak with maximum intensity at 495 K composed of four overlapping peaks. This indicates that different sets of traps are being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). Thermoluminescence (TL) glow curves were recorded for each of the ion fluences. A linear increase in intensity of TL glow peaks was found with the increase in ion dose from 59 kGy to 5.9 MGy. The kinetic parameters associated with the prominent glow peaks were calculated using glow curve deconvolution (GCD), different glow curve shape and sample heating rate methods.  相似文献   

9.
This report presents the luminescence properties of Ce3+ and Pr3+ activated Sr2Mg(BO3)2 under VUV-UV and X-ray excitation. The five excitation bands of crystal field split 5d states are observed at about 46 729, 44 643, 41 667, 38 314 and 29 762 cm−1 (i.e. 214, 224, 240, 261 and 336 nm) for Ce3+ in the host lattice. The doublet Ce3+ 5d→4f emission bands were found at about 25 840 and 24 096 cm−1 (387 and 415 nm). The influence of doping concentration and temperature on the emission characteristics and the decay time of Ce3+ in Sr2Mg(BO3)2 were investigated. For Pr3+ doped samples, the lowest 5d excitation band was observed at about 42017 cm−1 (238 nm), a dominant band at around 35714 cm−1 (280 nm) and two shoulder bands were seen in the emission spectra. The excitation and emission spectra of Ce3+ and Pr3+ were compared and discussed. The X-ray excited luminescence studies show that the light yields are ∼3200±230 and ∼1400±100 photons/MeV of absorbed X-ray energy for the samples Sr1.86Ce0.07Na0.07Mg(BO3)2 and Sr1.82Pr0.09Na0.09Mg(BO3)2 at RT, respectively.  相似文献   

10.
Magnesium aluminate (MgAl2O4) doped with trivalent chromium (Cr3+) was synthesized by the combustion method. The prepared sample was characterized by X-ray powder diffraction, Brunauer-Emmet-Teller (BET) adsorption isotherms and diffuse-reflectance UV-vis spectroscopy techniques. Electron paramagnetic resonance (EPR) and photoluminescence (PL) studies have been performed at room temperature and at 110 K. The EPR spectrum exhibit resonance signals at g=5.37, 4.53, 3.82, 2.26 and 1.96 characteristic of Cr3+ ions. The luminescence of Cr3+-activated MgAl2O4 exhibits a red emission peak around 686 nm from the synthesized phosphor particles upon 551 nm excitation. The luminescence is assigned to a transition from the upper 2Eg4A2g ground state of Cr3+ ions. By correlating EPR and optical data the crystal field splitting parameter (Dq), Racah inter-electronic repulsion parameter (B) and the bonding parameters have been evaluated and discussed. The bonding parameters suggests that the ionic nature of Cr3+ ions with the ligands and the Cr3+ ions are in distorted octrahedral environment.  相似文献   

11.
Abstract

Recombination luminescence emission spectra, TSL and trap spectra estimated by fractional glow technique (FGT), in nominally pure and Li-, Bi- and Ho-doped CdWO4, crystals are reported. According to the investigations by FGT heterovalent impurities Li, Bi and Ho causes localized electronic states which act as traps for charge carriers. It is shown that TSL results in emission of known blue-green luminescence band by emptying of the Li+-related traps in CdWO4-Li and yellow luminescence band by emptying of the Bi3+-related traps in CdWO4-Bi. It is proposed that blue-green and yellow luminescence occur by recombination correspondingly of free holes and free electrons at different intrinsic tungstate group related luminescence centers.  相似文献   

12.
Characteristics of two green emission bands, G(I) and G(II), and their origin were investigated within 0.4-300 K under photoexcitation in the 3.4-6.0 eV energy range for undoped and Mo6+-, Mo6+ , Y3+-, Mo6+, Nb5+-, Mo6+, Ce3+-, Cr6+-, La3+-, Ba2+- and Cd2+-doped PbWO4 crystals with different concentrations of impurity and intrinsic defects, grown by different methods and annealed at different conditions. The G(I) emission band, observed at low temperatures, located around 2.3-2.4 eV and excited around 3.9 eV, is usually a superposition of many closely positioned bands. The G(I) emission of undoped crystals is assumed to arise from the WO42− groups located in the crystal regions of lead-deficient structure. In Mo6+-doped crystals, this emission arises mainly from the MoO42− groups themselves. The G(II) emission band located at 2.5 eV is observed only in the crystals, containing the isolated oxygen vacancies — WO3 groups. This emission appears at T>160 K under excitation around 4.07 eV as a result of the photo-thermally stimulated disintegration of localized exciton states and subsequent recombination of the produced electron and hole centres near WO3 groups. The G(II) emission accompanies also thermally stimulated recombination processes in PbWO4 crystals above 150 K. Mainly the G(II) emission is responsible for the slow decay of the green luminescence in PbWO4 crystals.  相似文献   

13.
A series of Dy3+-doped calcium magnesium silicate phosphors: CaMgSi2O6:Dy3+, Ca2MgSi2O7:Dy3+, and Ca3MgSi2O8:Dy3+ with white long-lasting afterglow were prepared and investigated. The characteristic intra-configurational 4f emissions of Dy3+ were observed in the emission spectra as well as the afterglow spectra under ultraviolet excitation. The combination of the 480 nm blue emission corresponding to the 4F9/26H15/2 transition and the 575 nm yellow emission corresponding to the 4F9/26H13/2 transition yielded white-light emission. The white-coloured afterglow emission can last more than 1 h for most of the samples under study. The concentration dependence of the ratio of the yellow emission intensity with blue emission intensity was also examined and found to be varied for the different hosts. The thermoluminescence spectra above room temperature are employed for the discussion of the origin of the traps and the mechanism of the persistent luminescence.  相似文献   

14.
Y2O3:Eu3+, Tb3+ phosphors with white emission are prepared with different doping concentration of Eu3+ and Tb3+ ions and synthesizing temperatures from 750 to 950 °C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu3+ and Tb3+ co-doped Y2O3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu3+ and two at 481 and 541 nm originate from Tb3+, under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu3+ and Tb3+ ions were induced into the Y2O3 lattice and the energy transfer from Tb3+→Eu3+ ions in these phosphors was found. The Commission International de l’Eclairage (CIE) chromaticity shows that the Y2O3:Eu3+, Tb3+ phosphors can obtain an intense white emission.  相似文献   

15.
The mixed-compound of Sr1−xCaxTiO3 has shown several compositional phase transformations. Photoluminescence and excitation spectra of the samples with different x and doped with 0.2% Pr3+ were investigated. Changes in the emission spectra were observed in different phases. The blue emission at 491 nm from 3P0 state was found quite strong in the tetragonal phase, and was thermally quenched in the orthorhombic phases. The intensity of the red luminescence from 1D2 increases with increasing content of calcium. The strongest red emission is obtained from CaTiO3:Pr3+. The results are discussed based on the configuration coordinate model and interaction of Pr with the charge transfer exciton state of the Ti complex.  相似文献   

16.
The energy transfer processes in Lu2SiO5:Ce3+ luminescence was investigated through the temperature dependent luminescence under excitation with VUV-UV. Ce1 center emission peaking at 393 and 422 nm and Ce2 center emission peaking at 462 nm were observed. Ce2 center emission is enhanced with the temperature, which can be explained by the rate of energy transfer from Ce1 center increases when the temperature rises. The Ce1 emission shows the thermal quenching effect under the direct excitation of Ce3+ at 262 nm. However, under the interband excitation of 183 nm, the Ce1 center emission exhibits undulating temperature dependence. This is because the emission is governed by thermal quenching and possible thermal enhancement of the transport of free carriers with the rising temperature.  相似文献   

17.
调谐激光晶体Cr3+:ZnWO4光致发光特性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了调谐激光晶体Cr3+:ZnWO4的光致发光特性。报道了它的吸收光谱、激发光谱、发射光谱及其随温度的变化、零声子跃迁和发射寿命等实验结果,并讨论了激发特性、电子-声子耦合作用、ZnWO4中Cr3+的发射寿命曲线等相关问题。 关键词:  相似文献   

18.
Long persistent SrAl2O4:Eu2+ phosphors co-doped with Dy3+ were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl2O4 were observed in all the samples. The broad band emission spectra at 497 nm for SrAl2O4:Eu2+, Dy3+ were observed and the emission is attributed to the 4f65d1 to 4f7 transition of Eu2+ ions. The samples annealed at 1100–1200 °C showed similar broad TL glow curves centered at 120 °C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy3+ ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.  相似文献   

19.
Luminescence of the Bi3+ single and dimer centers in UV and visible ranges is studied in YAG:Bi (0.13 and 0.27 at% of Bi, respectively) single crystalline films (SCFs), grown by liquid phase epitaxy from a Bi2O3 flux. The cathodoluminescence spectra, photoluminescence decays, and time-resolved spectra are measured under the excitation by accelerated electrons and synchrotron radiation with energies of 3.7 and 12 eV, respectively. The energy level structure of the Bi3+ single and dimer centers was determined. The UV luminescence of YAG:Bi SCF in the bands that peaked at 4.045 and 3.995 eV at 300 K is caused by radiative transitions of Bi3+ single and dimer centers, respectively. The excitation spectra of UV luminescence of Bi3+ single and dimer centers consist of two dominant bands, peaked at 4.7/4.315 and 5.7/6.15 eV, related to the 1S03P1 (A band) and 1S01P1 (C-band) transitions of Bi3+ ions, respectively. The excitation bands that peaked at 7.0 and 7.09 eV are ascribed to excitons bound with the Bi3+ single and dimer centers, respectively. The visible luminescence of YAG:Bi SCF presents superposition of several wide emission bands peaking within the 3.125-2.57 eV range and is ascribed to different types of excitons localized around the Bi3+ single and dimer centers. Apart from the above mentioned A and C bands the excitation spectra of visible luminescence contain wide bands at 5.25, 5.93, and 6.85 eV ascribed to the O2−→Bi3+ and Bi3+→Bi4+ + e charge transfer transition (CTT) in Bi3+ single and dimer centers. The observed significant differences in the decay kinetics of visible luminescence under excitation in A and C bands of Bi3+ ions, CTT bands, and in the exciton and interband transitions confirm the radiative decay of different types of excitons localized around Bi3+ ions in the single and dimer centers.  相似文献   

20.
In this work, we have investigated the influence of doping agents on the luminescence properties of multiply doped Li2B4O7 and the temperature lag between TSL materials and the heating element. The results of thermoluminescence studies show that the Ag doping leads to the appearance of a new glow curve peak at 165 °C and the increasing sensitivity of Li2B4O7:Cu,Ag,P is correlated with copper and phosphate concentrations. Under the excitation at 245 nm the emission spectra show maxima at 365 and 450 nm in the ceramic, crystal and glass. The low energy shift in the latter system might be related to the local structural distortion in the glass around Cu+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号