首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper presents a new exact solution of the Navier–Stokes equations in the Boussinesq approximation that describes thermocapillary advective flow in a slowly rotating horizontal layer of incompressible fluid with free boundaries. Such flow occurs in the case of linear temperature distribution over horizontal coordinates or in the case of heat flux distribution at the layer boundaries. The influence of the Taylor, Marangoni, Grashof, and Biot numbers on the flow and temperature velocity profiles is studied.  相似文献   

2.
A numerical method for direct simulation of thermal Marangoni effects at dynamically deformable interface of two-phase incompressible fluids is developed. The approach is based on the Volume of Fluid (VOF) method with special focus on the numerical treatment of the temperature surface gradient because of its decisive role as the driving force of the flow. The surface gradient calculation is split into computing its length and direction in order to satisfy the correct thermal boundary condition at the interface without losing mobility of the interface. The method is applied to three different types of thermocapillary flow, namely thermocapillary migration of a droplet in an ambient fluid with linear temperature gradient, thermocapillary convection in a liquid layer under linear temperature gradient along the interface, and Marangoni convection due to Bénard–Marangoni instability. In the first case, different aspects of the dynamics of the migration are considered for validation such as the terminal migration velocity, the initial acceleration and quantification of the wall effects. The simulation also considers high convective heat transfer and covers a wide range of Marangoni numbers up to 5000, where good agreement with both theoretical and experimental results is achieved. In the second case, the convection velocity in the liquid layer is compared with an analytical result. In the final application, pattern formation due to the Bénard–Marangoni instability in a liquid layer in square geometry of small aspect ratio is investigated for realistic Biot number and dynamically deformable fluid interface. The results show good agreement with experiments from literature, where our numerical simulation also predicts cell pattern for a particular aspect ratio which is outside the limitation of the above cited experimental work.  相似文献   

3.
赵诚卓  胡开鑫 《力学学报》2022,54(2):291-300
溶质?热毛细对流是流体界面的浓度和温度分布不均导致的表面张力梯度驱动的流动, 它主要存在于空间微重力环境、小尺度流动等表面张力占主导的情况中, 例如晶体生长、微流控、合金浇筑凝固、有机薄液膜生长等. 对其流动进行稳定性分析具有重要意义. 本文采用线性稳定性理论研究了双自由面溶质?热毛细液层对流的不稳定性, 得到了两种负毛细力比(η)下的临界Marangoni数与Prandtl数(Pr)的函数关系, 并分析了临界模态的流场和能量机制. 研究发现: 溶质?热毛细对流和纯热毛细对流的临界模态有较大的差别, 前者是同向流向波、逆向流向波、展向稳态模态和逆向斜波, 后者是逆向斜波和逆向流向波. 在Pr较大时, Pr增加会降低流动稳定性; 在其他参数下, Pr增加会增强流动稳定性. 在中低Pr, 溶质毛细力使流动更加不稳定; 在大Pr时, 溶质毛细力的出现可能使流动更加稳定; 在其他参数下, 溶质毛细力会减弱流动稳定性. 流动稳定性不随η单调变化. 在多数情况下, 扰动浓度场与扰动温度场都是相似的. 能量分析表明: 扰动动能的主要能量来源是表面张力做功, 但其中溶质毛细力和热毛细力做功的正负性与参数有关.   相似文献   

4.
The aim of the present study is to understand the problem of buoyancy and thermocapillary induced convection of cold water near its density maximum in an open cavity with temperature dependent properties in the presence of uniform external magnetic field. The governing equations are solved by the finite volume method. The results are discussed for various values of reference temperature parameter, density inversion parameter, Rayleigh, Hartmann and Marangoni numbers. It is observed that the temperature of maximum density leaves strong effects on fluid flow and heat transfer due to the formation of bi-cellular structure. Convection heat transfer is enhanced by thermocapillary force when buoyancy force is weakened.  相似文献   

5.
In order to understand the effect of the vertical heat transfer on thermocapillary convection characteristics in a differentially heated open shallow rectangular cavity, a series of two- and three-dimensional numerical simulations were carried out by means of the finite volume method. The cavity was filled with the 1cSt silicone oil (Prandtl number Pr = 13.9) and the aspect ratio ranged from 12 to 30. Results show that thermocapillary convection is stable at a small Marangoni number. With the increase of the heat flux on the bottom surface, thermocapillary convection transits to the asymmetrical bi-cellular pattern with the opposite rotation direction. The roll near the hot wall shrinks as the Marangoni number increases. At a large Marangoni number, numerical simulations predict two types of the oscillatory thermocapillary flow. One is the hydrothermal wave, which is dominant only in a thin cavity. The other appears in a deeper cavity and is characterized by oscillating multi-cellular flow. The critical Marangoni number for the onset of the oscillatory flow increases first and then decreases with the increase of the vertical heat flux. The three-dimensional numerical simulation can predict the propagating direction of the hydrothermal wave. The velocity and temperature fields obtained by three-dimensional simulation in the meridian plane are very close to those obtained by two-dimensional simulation.  相似文献   

6.
Rotation bifurcation in a steady axisymmetric thermocapillary flow of an incompressible fluid filling a semi-infinite space bounded by the free surface with a nonuniform distribution of temperature is studied. The fluid flow is calculated on the basis of Navier–Stokes equations under the assumption of small diffusion coefficients. It is shown that the bifurcation triggers rotational motion in a thin Marangoni boundary layer in the case of local cooling of the free boundary near the axis of symmetry and in the presence of an external flow; there is no rotation outside this layer. In the case of local heating of the free boundary, rotation is not observed.  相似文献   

7.
Coupled buoyancy (Bénard) and thermocapillary (Marangoni) convection in a thin fluid layer of a viscoelastic fluid are studied. The viscoelastic fluid is modeled by Jeffreys' constitutive equation. The lower surface of the layer is in contact with a rigid heat-conducting plate while its upper surface is subject to a temperature-dependent surface tension. The critical temperature difference between both boundaries corresponding to the onset of convection is calculated. The role of the various viscometric coefficients is discussed. In the appendix it is shown that Jeffreys' constitutive relation is easily derived from thermodynamic considerations based on extended irreversible thermodynamics.  相似文献   

8.
Thermocapillary flows in an infinitely long liquid cylinder surrounded by a coaxial gas layer with a controlled flow rate and the stability of such flows are investigated. In the layers a constant axial temperature gradient is maintained. An exact solution of the equations of motion describing the steady-state flow in this two-phase system is derived. Possible flow regimes and their stability in the linear approximation are studied. It is shown that in the liquid phase the thermocapillary flow can be completely stopped by the gas flow at the expense of the interaction between mechanical stresses at the interface. The results obtained indicate the possibility of controlling thermocapillary flows and their stability by means of gas flows.  相似文献   

9.
高鹏  尹兆华  胡文瑞 《力学进展》2008,38(3):329-338
液滴或气泡的迁移现象无论是在流体力学的基础研究中,还是在材料加工,化学工程等实际应用中都是一个很重要的课题。在微重力环境中,如果在液滴或气泡所在的母液中外加一个温度场,则液滴或气泡就会由于表面张力分布的不均匀而发生迁移运动。这种运动被称为Marangoni迁移或热毛细迁移运动。本文综述了液滴或气泡的热毛细迁移问题历史研究中理论分析,数值模拟以及实验方面的主要结果,阐述了该问题的研究发展过程。目前液滴迁移问题的研究状况,理论分析解还只限于线性及弱非线性的定常问题,数值模拟工作已经得到了在热对流作用比较小的时候液滴的非定常迁移过程,但是对于热对流影响很大的情况(Marangoni数大于100)则尚未得到过与实验中观测到的相一致的理论结果。本文在总结前人研究的基础上,同时给出了在对于热对流作用较大时液滴热毛细迁移非定常问题的最新的数值模拟的结果,并对该问题在此情况下产生的新的变化也给予了分析。最后,文中分析了当前研究中所存在的问题并进一步展望了液滴热毛细迁移问题在未来的发展方向。   相似文献   

10.
The paper deals with the numerical investigation of the possibilities to control convective flows in the liquid bridge in zero gravity conditions applying axial vibrations. The surface tension is assumed to be dependent both on the temperature and on the solute concentration. The free surface deformations and the curvature of the phase change surfaces are neglected but pulsational deformations of the free surface are accounted for. The first part of the paper concerns axisymmetric steady flows. The calculations show that the evolution of convective flow with the variation of thermal Marangoni number at a fixed value of the solutal Marangoni number is accompanied by the hysteresis phenomenon, which is related to the existence of two stable steady regimes in a certain parameter range. One of these regimes is thermocapillary dominated, it corresponds to the two-vortex flow, and the other is solutocapillary dominated, it corresponds to the single-vortex flow. Under vibrations, the range of the Marangoni numbers where hysteresis is observed becomes narrower and is shifted to the area of larger values. The second part of the paper concerns the stability of axisymmetric thermo-and solutocapillary flows and the transition to three-dimensional regimes. Significant mutual influence of flows generated by each process on the stability of the other is discovered. Stability maps in the parametric plane for the thermal Marangoni number, the solutal Marangoni number, are obtained for different values of vibration parameters. It is shown, that vibrations exert a stabilizing effect, increasing critical Marangoni numbers for all modes of instability. However, this effect is different for different modes and at high vibration intensity destabilization is possible. Consequently, vibrations can modify the scenario of the transition to the three-dimensional mode.  相似文献   

11.
The problem of thermocapillary (Marangoni) convection in a layer of viscoelastic liquid is considered. The stability boundary for this problem has been previously calculated in various cases by a number of authors. Here attention is fixed on the magnitude of the growth rate in the parameter regime corresponding to instability. Two noteworthy features are pointed out. First, there are anomalously large values of the growth rate at or near the limiting special case of a Maxwell fluid. Second, the complex values of the growth rate (corresponding to overstability, or the onset of instability via oscillatory motion) coalesce into real (positive) values at moderately supercritical values of the Marangoni number, suggesting that overstability might be elusive to observation.  相似文献   

12.
The experimental realization of thermocapillary flow without return flow is reported. This type of flow (linear flow) was proposed and analyzed theoretically by Smith and Davis (J. Fluid Mech., 132:119–144, 1983). We suppressed the return flow by providing channels and side channels with lower flow resistance compared to that of the return flow. Cooling the layer with linear flow from above results in the Marangoni instability of longitudinal rolls as the most dangerous mode. Strong linear flow stabilizes the system against longitudinal rolls. We report preliminary results on the threshold and on the wavelength of the longitudinal rolls.  相似文献   

13.
In the present paper, the experimental studies on thermocapillary convection are reviewed. The author‘s interest is mainly focused on the onset of oscillatory thermocapillary convection,the features of oscillatory flow pattern, and the critical Marangoni number related with temperature and free surface oscillation. The coordinated measurement in a microgravity environment of a drops haft is also addressed.  相似文献   

14.
The buoyant Marangoni convection heat transfer in a differentially heated cavity is numerically studied. The cavity is filled with water-Ag, water-Cu, water-Al2O3, and water-TiO2 nanofluids. The governing equations are based on the equations involving the stream function, vorticity, and temperature. The dimensionless forms of the governing equations are solved by the finite difference (FD) scheme consisting of the alternating direction implicit (ADI) method and the tri-diagonal matrix algorithm (TDMA). It is found that the increase in the nanoparticle concentration leads to the decrease in the flow rates in the secondary cells when the convective thermocapillary and the buoyancy force have similar strength. A critical Marangoni number exists, below which increasing the Marangoni number decreases the average Nusselt number, and above which increasing the Marangoni number increases the average Nusselt number. The nanoparticles play a crucial role in the critical Marangoni number.  相似文献   

15.
The stability of thermocapillary two-component liquid flow is studied taking into account thermal diffusion. An explicit expression is obtained to construct neutral Marangoni numbers under the assumption of monotonicity of perturbations. The thermocapillary and hydrodynamic instability mechanisms are considered. It is shown that plane perturbations are the greatest hazard to the stability of return flow.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 5, pp. 86–92, September–October, 2005.  相似文献   

16.
王胜  胡开鑫 《力学学报》2022,54(12):3398-3407
热毛细对流是流体界面温度分布不均导致的表面张力梯度驱动的流动.它主要存在于空间等微重力环境或小尺度流动等表面张力占主导的情况中.在很多工业领域,如晶体生长、聚合物加工、喷墨打印、微流控,产品质量都与热毛细对流密切相关.空间3D打印是太空制造的重要技术,可以支持空间站的在轨长期有人照料的运行和维护,实现按需制造.本文以聚合物流体的空间3D打印为应用背景,采用线性稳定性理论研究了Bingham流体双自由面热毛细液层的稳定性,得到了在不同Bingham数(B)下的临界Marangoni数(Mac)与Prandtl数(Pr)的函数关系,分析了临界模态的流场和能量机制.研究发现:该流动的临界模态包括流向波和斜波模态,与B, Bi和两界面垂直方向上的温差(Q)相关. B和Bi的增加会增强热毛细对流的稳定性.当Q=0时,扰动温度分布分成对称和反对称两种情况.当Q> 0时, Pr的增加会减弱流动稳定性.在小Pr情况下,扰动温度分布在整个流场,在大Pr情况下,扰动温度在栓塞区为零.能量分析表明:扰动动能的主要能量来源是表面张力做功,但小Pr数下基本流也有一定贡献.  相似文献   

17.
通过数值模拟的方法对磁场作用下的双扩散液层热毛细对流进行了研究, 模型中同时考虑了热毛细效应和溶质毛细效应的存在. 研究结果显示, 外部磁场能够有效削弱液层内热毛细对流的强度, 改变热毛细对流的对流结构; 随着磁场强度的增大, 液层内热毛细对流的对流强度逐渐减小, 热质传递过程中扩散效应逐渐得到增强; 最终, 溶质浓度沿水平方向呈梯度分布. 因此, 当磁场强度足够大时能够实现晶体生长中所需的纯扩散条件.  相似文献   

18.
This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.  相似文献   

19.
章绍能  胡开鑫 《力学学报》2021,53(5):1313-1323
液滴在温度分布不均的固壁面上产生的热毛细迁移广泛存在于微流控、喷墨印刷等应用中,对其流动进行稳定性分析对液滴迁移的精准控制具有重要意义.本文采用线性稳定性理论研究了附壁黏弹性液滴在热毛细迁移中的对流不稳定性,得到了不同Prandtl数(Pr)下的临界Marangoni数(Mac)与弹性数的函数关系,并分析了临界模态的流...  相似文献   

20.
近二十年来,微重力流体开展了半浮区液桥热毛细对流的不稳定性与转捩的研究.文中给出了热毛细振荡对流发生的临界参数,分析了液桥几何位形(尺度比,体积比)、物理参数及传热参数对临界Maxangoni的影响.报导了有关的地面模拟实验,微重力实验以及本问题的线性稳定性分析、能量分析和数值模拟结果,并介绍了定常轴对称热毛细对流通过非定常振荡热毛细对流到湍流的转捩过程和三种热毛细振荡对流的产生机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号