首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report we have investigated the temperature dependence of photoluminescence (PL) from self-assembled InAs quantum dots (QDs) covered by an InAlAs/InGaAs combination layer. The ground state experiences an abnormal variation of PL linewidth from 15 K up to room temperature. Meanwhile, the PL integrated intensity ratio of the first excited state to the ground state for InAs QDs unexpectedly decreases with increasing temperature, which we attribute to the phonon bottleneck effect. We believe that these experimental results are closely related to the partially coupled quantum dots system and the large energy separation between the ground and the first excited states.  相似文献   

2.
The influence of GaAs(1 0 0) 2° substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality.  相似文献   

3.
We have investigated the optical properties of InAs/GaAs self-assembled quantum dots (QDs), grown at 500 °C using a low growth rate (0.014 ML/s), growth interruptions and a two-stage capping process. The samples exhibited large-size dots with densities in the range (3-4.5) × 109 cm−2. Macro-photoluminescence (macro-PL) measurements revealed the presence of five electronic sub-bands in the dots, with the ground state (GS) emission exhibiting a linewidth of ∼70 meV. Because of the dots large size and composition dispersions, associated with the growth method, it was possible to resolve single dots emissions using micro-PL (μ-PL) excitation in the barrier layers of the as-grown samples. The sharp PL lines were detected 60-140 meV above the GS peak energy. High-resolution resonant optical excitation of the dots PL evidenced that these fine lines originate from exciton complexes confined to the GS of individual dots. Non-resonant power dependence μ-PL spectroscopy results further confirmed the occurrence of both single exciton (X) and biexciton (XX) radiative recombinations. Finally, with increasing lattice temperature up to 95 K, PL emissions from most of these nanostructures suffered the usual thermal quenching, with activation energies (Ea) ranging between 12 and 41 meV. The relatively small values of Ea suggest that the growth technique implemented here favors the formation of defects centers in the vicinity of the QDs.  相似文献   

4.
The effect of thermal annealing on self-assembled uncapped InAs/GaAs quantum dots (QDs) has been investigated using transmission electron microscopy (TEM) and photoluminescence (PL) measurements. The TEM images showed that the lateral sizes and densities of the InAs QDs were not changed significantly up to 650 °C. When the InAs/GaAs QDs were annealed at 700 °C, while the lateral size of the InAs QDs increased, their density decreased. The InAs QDs disappeared at 800 °C. PL spectra showed that the peaks corresponding to the interband transitions of the InAs QDs shifted slightly toward the high-energy side, and the PL intensity decreased with increasing annealing temperature. These results indicate that the microstructural and the optical properties of self-assembled uncapped InAs/GaAs can be modified due to postgrowth thermal annealing.  相似文献   

5.
Self-assembled InAs quantum dots (QDs) with high-density were grown on GaAs(0 0 1) substrates by antimony (Sb)-mediated molecular beam epitaxy technique using GaAsSb/GaAs buffer layer and InAsSb wetting layer (WL). In this Sb-mediated growth, many two-dimensional (2D) small islands were formed on those WL surfaces. These 2D islands provide high step density and suppress surface migration. As the results, high-density InAs QDs were achieved, and photoluminescence (PL) intensity increased. Furthermore, by introducing GaAsSb capping layer (CL), higher PL intensity at room temperature was obtained as compared with that InGaAs CL.  相似文献   

6.
Photoluminescence(PL) from self-organized Ge quantum dots(QDs) with large size and low density has been investigated over a temperature range from 10 to 300 K using continuous-wave(CW) optical excitation.The integrated PL intensity of QDs observed is negligible at about 10 K and rapidly increases with raising temperature up to 100 K.Through analyzing the PL experimental data of the QDs and wetting layer(WL),we provide direct evidence that there exists a potential barrier,arising from the greater compressive...  相似文献   

7.
ZnCuInS量子点的变温光致发光   总被引:2,自引:2,他引:0       下载免费PDF全文
测量了红色和深红色发光的ZnCuInS量子点在100~300 K温度范围内的光致发光光谱,研究了ZnCuInS量子点的发光机理,对ZnCuInS量子点的发光峰值能量、线宽和积分强度与温度的关系进行了细致的分析。在ZnCuInS量子点中观察到一种反常的发光峰值能量随着温度升高而增加的现象,同时发现ZnCuInS量子点的发光线宽很宽,约为300 meV,拟合积分强度与温度的关系曲线所得到的激活能为100 meV。这些结果表明,ZnCuInS量子点的发光不可能只来源于一种发光中心,而应该是来源于ZnCuInS量子点内部及表面的多种缺陷相关的多种发光中心组合。  相似文献   

8.
采用稳态速率方程模型,对双模自组织量子点光致发光的温度依赖性进行了研究,模拟获得了不同温度下双模自组织量子点的光致发光光谱,并进一步研究了两组量子点分布的光致发光强度比的温度依赖性。研究表明:在低温下(<75K),两组量子点分布的发光强度比基本保持不变;随着温度的升高(75K相似文献   

9.
Temperature-dependent photoluminescence (PL) spectroscopy of CuInS2 core and CuInS2/ZnS core–shell quantum dots (QDs) was studied for understanding the influence of a ZnS shell on the PL mechanism. The PL quantum yield and lifetime of CuInS2 core QDs were significantly enhanced after the QD surface was coated with the ZnS shell. The temperature dependences of the PL energy, linewidth, and intensity for the core and core–shell QDs were studied in the temperature range from 92 to 287 K. The temperature-dependent shifts of 98 meV and 35 meV for the PL energies of the QDs were much larger than those of the excitons in their bulk semiconductors. It was surprisingly found that the core and core–shell QDs exhibited a similar temperature dependence of the PL intensity. The PL in the CuInS2/ZnS core–shell QDs was suggested to originate from recombination of many kinds of defect-related emission centers in the interior of the cores.  相似文献   

10.
The photoluminescence spectra of InAs quantum dots (QDs) embedded into four types of InxGa1−xAs/GaAs (x = 0.10, 0.15, 0.20 and 0.25) multi quantum well MBE structures have been investigated at 300 K in dependence on the QD position on the wafer. PL mapping was performed with 325 nm HeCd laser (35 mW) focused down to 200 μm (110 W/cm2) as the excitation source. The structures with x = 0.15 In/Ga composition in the InxGa1−xAs capping layer exhibited the maximum photoluminescence intensity. Strong inhomogeneity of the PL intensity is observed by mapping samples with the In/Ga composition of x ≥ 0.20-0.25. The reduction of the PL intensity is accompanied by a gradual “blue” shift of the luminescence maximum at 300 K as follows from the quantum dot PL mapping. The mechanism of this effect has been analyzed. PL peak shifts versus capping layer composition are discussed as well.  相似文献   

11.
We have fabricated a Schottky diode embedding InAs self-assembled quantum dots (QDs) grown by alternately supplying In and As sources. As a function of the electric field, we have investigated the photoluminescence (PL) for the InAs QDs in the Schottky diode at 300 K. We controlled the electric field in order that the QD layer was located in the depletion region of Schottky diode. The relationship between the electric field and the depletion width of the Schottky diode was deduced through the capacitance-voltage measurement. The Stark shift was observed in PL spectra for QDs; the energy of the PL line shifted to the lower energy as the electric field increased. It was also observed that the PL emission intensity gradually decreased. By the fitting to the experimental data, we determined a built-in dipole moment, corresponding to an electron-hole separation.  相似文献   

12.
Aqueous dispersion of 4-8 nm size stable ZnO quantum dots (QDs) exhibiting luminescence in the visible region have been synthesized by a simple solution growth technique at room temperature. Silica has been used as capping agent to control the particle size as well as to achieve uniform dispersion of QDs in aqueous medium. X-ray diffractometer (XRD) analysis reveals formation phase pure ZnO particles having wurzite (hexagonal) structure. Atomic force microscope (AFM) images show that the particles are spherical in shape, having average crystalline sizes ∼4, 5.5 and 8 nm for samples prepared at pH values of 10, 12 and 14, respectively. From the optical absorption studies, the band gap energy of QDs is found to be blue shifted as compared to bulk ZnO (3.36 eV) due to the quantum confinement effect and is consistent with the band gap calculated by using effective-mass approximation model. The photoluminescence (PL) observed in these QDs has been attributed to the presence of defect centers.  相似文献   

13.
In this paper, we present a study of photoluminescence (PL) from AlInAs/AlGaAs quantum dots (QDs) structures grown by molecular beam epitaxy. Specifically, we describe the effects of the temperature and of the excitation density on the photoluminescence circular polarization. We have found that the circular polarization degree depends on temperature. On the other hand, the study of the excitation density dependent circular polarization PL degree shows that the last increases in the case of the sample of weak dot density. However, in the case of large dot density, it is almost constant in the excitation density range from 0.116 W cm−2 to 9 W cm−2.  相似文献   

14.
InAs quantum dots (QDs) on GaAs (0 0 1) substrates were grown by Molecular Beam Epitaxy (MBE) using two growth temperatures. Photoluminescence (PL) pump power dependence measurements at low temperature were carried out for sample grown at higher temperature (520 °C). With increasing excitation density, the ground-state transition energy is found to decrease by 8 meV, while the excited-state transition energies exhibit resonance behaviour. The redshift of the ground-state emission was related to the band-gap renomalization (BGR) effect whereas the blueshift of the excited-state emissions was assigned to the compensation between filling of fine structure states and BGR effects. Using a quasi-resonant PL measurement, we have shown that the renormalization of the band-gap had to occur in the QD barrier.  相似文献   

15.
The intermixing of Sb and As atoms induced by rapid thermal annealing (RTA) was investigated for type II GaSb/GaAs self-assembled quantum dots (QD) formed by molecular beam epitaxy growth. Just as in InAs/GaAs QD systems, the intermixing induces a remarkable blueshift of the photoluminescence (PL) peak of QDs and reduces the inhomogeneous broadening of PL peaks for both QD ensemble and wetting layer (WL) as consequences of the weakening of quantum confinement. Contrary to InAs/GaAs QDs systems, however, the intermixing has led to a pronounced exponential increase in PL intensity for GaSb QDs with annealing temperature up to 875 °C. By analyzing the temperature dependence of PL for QDs annealed at 700, 750 and 800 °C, activation energies of PL quenching from QDs at high temperatures are 176.4, 146 and 73.9 meV. The decrease of QD activation energy with annealing temperatures indicates the reduction of hole localization energy in type II QDs due to the Sb/As intermixing. The activation energy for the WL PL was found to drastically decrease when annealed at 800 °C where the QD PL intensity surpassed WL.  相似文献   

16.
Water-soluble CdSe quantum dots (QDs) were synthesized using mercaptosuccinic acid (MSA) as a stabilizer. The growth process and characterization of CdSe quantum dots were determined by transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Ultraviolet-visible (UV-vis) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Results demonstrated the MSA-capped CdSe QDs were highly crystalline and possessed good optical properties. Further, the resulting products could be used as fluorescent probes to detect Cu2+ ions in physiological buffer solution. The response was linearly proportional to the concentration of Cu2+ ion in the range 2×10−8- 3.5×10−7 mol L−1 with a detection limit of 3.4 nmol L−1.  相似文献   

17.
An optical fiber glass containing PbSe quantum dots   总被引:1,自引:0,他引:1  
An optical fiber material, sodium-aluminum-borosilicate glass doped with PbSe quantum dots (QDs) is synthesized by a high-temperature melting method. Crystallization, size distribution and absorption-photoluminescence (PL) of this material are observed by XRD, TEM, and spectrometer respectively. The obtained results indicate that the glass contains QDs in diameter of 6-13 nm depending on the heat-treatment temperature and with a higher doped concentration than those available. It shows an enhanced PL, widened FWHM (275-808 nm), obvious Stokes shift (20-110 nm), with the PL peak wavelength located within 1676-2757 nm depending on the size of QD. The glass is fabricated into an optical fiber in diameter of 10-70 μm and length of 1 m, with pliability and ductility similar to usual SiO2 fibers. It can be easily fused and spliced with SiO2 fibers due to a small difference of melting point between them. Characterized by high doped concentration and broad FWHM, this study suggests that the glass can be applied to designing novel broadband fiber amplifiers working in C-L waveband.  相似文献   

18.
The aging of the photoluminescence (PL) in bio-conjugated and non-conjugated CdSeTe–ZnS core–shell quantum dots (QDs) is studied by the micro-PL, micro-Raman and X-ray diffraction (XRD) in the samples of buffered QD solution dried on a crystalline Si wafer and stored in the atmospheric ambience for about 2 years. The aging of the PL consists in a “blue” spectral shift of the PL band, an increase in PL band half-width and the decrease in the PL intensity. These changes are more pronounced in the conjugated QD samples. The XRD analysis of the aged samples revealed that the QD core diameter is reduced by ∼1.5 nm in the conjugated QDs as compared to the non-conjugated ones. The possible mechanism of PL spectrum aging is the oxidation that decreases the QD core dimension. It is concluded that the bio-conjugation promotes QD oxidation and the mechanism of the effect is proposed.  相似文献   

19.
The photoluminescence (PL), its temperature dependence and X ray diffraction (XRD) have been studied in the symmetric In0.15Ga0.85As/GaAs quantum wells (QWs) with embedded InAs quantum dots (QDs), obtained with the variation of QD growth temperatures (470–535 °C). The increase of QD growth temperatures is accompanied by the enlargement of QD lateral sizes (from 12 up to 28 nm) and by the shift non monotonously of PL peak positions. The fitting procedure has been applied for the analysis of the temperature dependence of PL peaks. The obtained fitting parameters testify that in studied QD structures the process of In/Ga interdiffusion between QDs and capping/buffer layers takes place partially. However this process cannot explain the difference in PL peak positions.  相似文献   

20.
ZnO quantum dots (QDs) with strong blue emission have been successfully synthesized by sol-gel method, and their crystal structures, sizes, and photoluminescence properties were characterized by X-ray diffractometer, scanning electron microscope, and ultraviolet-visible spectroscopy. It has been found that ZnO QDs had a hexagonal wurtzite crystal structure, and their average diameter was about 16.0-32.2 nm. Both the reaction time and temperature were found to have a strong influence on the average size and photoluminescence properties of ZnO QDs. Longer reaction time and higher reaction temperature resulted in larger average size for ZnO QDs. It has been shown that at reaction temperature 60 °C the emission intensity for ZnO QDs increased first with reaction time before 7 h and then decreased after 7 h. For the same reaction time 7 h, ZnO QDs synthesized at 60 °C showed the strongest emission intensity. It was found that annealing in nitrogen, vacuum, and air all resulted in an increase of the size of ZnO QDs and a reduction in their photoluminescence. The dependence of the size and properties of ZnO QDs on the reaction parameters as well as the annealing conditions has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号