首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a theory of f{\phi} -coordinated (quasi-) modules for a general nonlocal vertex algebra where f{\phi} is what we call an associate of the one-dimensional additive formal group. By specializing f{\phi} to a particular associate, we obtain a new construction of weak quantum vertex algebras in the sense of Li (Selecta Mathematica (New Series) 11:349–397, 2005). As an application, we associate weak quantum vertex algebras to quantum affine algebras, and we also associate quantum vertex algebras and f{\phi} -coordinated modules to a certain quantum βγ-system explicitly.  相似文献   

2.
3.
We analyze the set of locally normal KMS states w.r.t. the translation group for a local conformal net A{{\mathcal A}} of von Neumann algebras on \mathbb R{\mathbb R} . In this first part, we focus on the completely rational net A{{\mathcal A}} . Our main result here states that, if A{{\mathcal{A}}} is completely rational, there exists exactly one locally normal KMS state j{\varphi} . Moreover, j{\varphi} is canonically constructed by a geometric procedure. A crucial r?le is played by the analysis of the “thermal completion net” associated with a locally normal KMS state. A similar uniqueness result holds for KMS states of two-dimensional local conformal nets w.r.t. the time-translation one-parameter group.  相似文献   

4.
We investigate Einstein theories of gravity, coupled to a scalar field j{\varphi} and point-like matter, which are characterized by a scalar field-dependent matter coupling function eH(j){e^{H(\varphi)}} . We show that under mild constraints on the form of the potential for the scalar field, there are a broad class of Einstein-like gravity models—characterized by the asymptotic behavior of H—which allow for a non-Newtonian weak-field limit with the gravitational potential behaving for large distances as ln r. The Newtonian term GM/r appears only as sub-leading. We point out that this behavior is also shared by gravity models described by f (R) Lagrangians. The relevance of our results for the building of infrared modified theories of gravity and for modified Newtonian dynamics is also discussed.  相似文献   

5.
We consider the vortex equations for a U(n) gauge field A coupled to a Higgs field f{\phi} with values on the n × n matrices. It is known that when these equations are defined on a compact Riemann surface Σ, their moduli space of solutions is closely related to a moduli space of τ-stable holomorphic n-pairs on that surface. Using this fact and a local factorization result for the matrix f{\phi} , we show that the vortex solutions are entirely characterized by the location in Σ of the zeros of det f{\phi} and by the choice of a vortex internal structure at each of these zeros. We describe explicitly the vortex internal spaces and show that they are compact and connected spaces.  相似文献   

6.
Infrared asymptotic behavior of a scalar field, passively advected by a random shear flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity is Gaussian, white in time, with correlation function of the form μ d(t-t¢) / k^d-1+x\propto\delta(t-t') / k_{\bot}^{d-1+\xi}, where k =|k | and k is the component of the wave vector, perpendicular to the distinguished direction (‘direction of the flow’)—the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda (Commun. Math. Phys. 131:381, 1990). The structure functions of the scalar field in the infrared range exhibit scaling behavior with exactly known critical dimensions. It is strongly anisotropic in the sense that the dimensions related to the directions parallel and perpendicular to the flow are essentially different. In contrast to the isotropic Kraichnan’s rapid-change model, the structure functions show no anomalous (multi)scaling and have finite limits when the integral turbulence scale tends to infinity. On the contrary, the dependence of the internal scale (or diffusivity coefficient) persists in the infrared range. Generalization to the velocity field with a finite correlation time is also obtained. Depending on the relation between the exponents in the energy spectrum E μ k^1-e\mathcal{E} \propto k_{\bot}^{1-\varepsilon} and in the dispersion law w μ k^2-h\omega\propto k_{\bot}^{2-\eta}, the infrared behavior of the model is given by the limits of vanishing or infinite correlation time, with the crossover at the ray η=0, ε>0 in the εη plane. The physical (Kolmogorov) point ε=8/3, η=4/3 lies inside the domain of stability of the rapid-change regime; there is no crossover line going through this point.  相似文献   

7.
Special p-forms are forms which have components ${\varphi_{\mu_1\dots\mu_p}}Special p-forms are forms which have components jm1...mp{\varphi_{\mu_1\dots\mu_p}} equal to +1, −1 or 0 in some orthonormal basis. A p-form j ? Lp\mathbbRd{\varphi\in \Lambda^p\mathbb{R}^d} is called democratic if the set of nonzero components {jm1...mp}{\{\varphi_{\mu_1\dots\mu_p}\}} is symmetric under the transitive action of a subgroup of O(d,\mathbbZ){{\rm O}(d,\mathbb{Z})} on the indices {1, . . . , d}. Knowledge of these symmetry groups allows us to define mappings of special democratic p-forms in d dimensions to special democratic P-forms in D dimensions for successively higher Pp and Dd. In particular, we display a remarkable nested structure of special forms including a U(3)-invariant 2-form in six dimensions, a G2-invariant 3-form in seven dimensions, a Spin(7)-invariant 4-form in eight dimensions and a special democratic 6-form Ω in ten dimensions. The latter has the remarkable property that its contraction with one of five distinct bivectors, yields, in the orthogonal eight dimensions, the Spin(7)-invariant 4-form. We discuss various properties of this ten dimensional form.  相似文献   

8.
We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain ${\Omega\subset\mathbb{R}^2}We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain W ì \mathbbR2{\Omega\subset\mathbb{R}^2} , which is not necessarily simply connected. On an arbitrary bounded domain we obtain new equilibria for N = 3 or N = 4. If Ω has an axial symmetry we obtain a symmetric equilibrium for each N ? \mathbbN{N\in\mathbb{N}} . We also obtain new stream functions solving the sinh-Poisson equation -Dy = rsinhy{-\Delta\psi=\rho\sinh\psi} in Ω with Dirichlet boundary conditions for ρ > 0 small. The stream function yr{\psi_\rho} induces a stationary velocity field vr{v_\rho} solving the Euler equation in Ω. On an arbitrary bounded domain we obtain velocitiy fields having three or four counter-rotating vortices. If Ω has an axial symmetry we obtain for each N a velocity field vr{v_\rho} that has a chain of N counter-rotating vortices, analogous to the Mallier-Maslowe row of counter-rotating vortices in the plane. Our methods also yield new nodal solutions for other semilinear Dirichlet problems, in particular for the Lane-Emden-Fowler equation -Du=|u|p-1u{-\Delta u=|u|^{p-1}u} in Ω with p large.  相似文献   

9.
We make the cosmological constant, Λ, into a field and restrict the variations of the action with respect to it by causality. This creates an additional Einstein constraint equation. It restricts the solutions of the standard Einstein equations and is the requirement that the cosmological wave function possess a classical limit. When applied to the Friedmann metric it requires that the cosmological constant measured today, t U , be L ~ tU-2 ~ 10-122{\Lambda \sim t_{U}^{-2} \sim 10^{-122}} , as observed. This is the classical value of Λ that dominates the wave function of the universe. Our new field equation determines Λ in terms of other astronomically measurable quantities. Specifically, it predicts that the spatial curvature parameter of the universe is Wk0 o -k/a02H2=-0.0055{\Omega _{\mathrm{k0}} \equiv -k/a_{0}^{2}H^{2}=-0.0055} , which will be tested by Planck Satellite data. Our theory also creates a new picture of self-consistent quantum cosmological history.  相似文献   

10.
We show, within the framework of the massive Euclidean j4{\varphi^4} -quantum field theory in four dimensions, that the Wilson operator product expansion (OPE) is not only an asymptotic expansion at short distances as previously believed, but even converges at arbitrary finite distances. Our proof rests on a detailed estimation of the remainder term in the OPE, of an arbitrary product of composite fields, inserted as usual into a correlation function with further “spectator fields”. The estimates are obtained using a suitably adapted version of the method of renormalization group flow equations. Convergence follows because the remainder is seen to become arbitrarily small as the OPE is carried out to sufficiently high order, i.e. to operators of sufficiently high dimension. Our results hold for arbitrary, but finite, loop orders. As an interesting side-result of our estimates, we can also prove that the “gradient expansion” of the effective action is convergent.  相似文献   

11.
We classify simple linearly compact n-Lie superalgebras with n > 2 over a field ${\mathbb{F}}We classify simple linearly compact n-Lie superalgebras with n > 2 over a field \mathbbF{\mathbb{F}} of characteristic 0. The classification is based on a bijective correspondence between non-abelian n-Lie superalgebras and transitive \mathbbZ{\mathbb{Z}}-graded Lie superalgebras of the form L=?j=-1n-1 Lj{L=\oplus_{j=-1}^{n-1} L_j}, where dim L n−1 = 1, L −1 and L n−1 generate L, and [L j , L nj−1] = 0 for all j, thereby reducing it to the known classification of simple linearly compact Lie superalgebras and their \mathbbZ{\mathbb{Z}}-gradings. The list consists of four examples, one of them being the n + 1-dimensional vector product n-Lie algebra, and the remaining three infinite-dimensional n-Lie algebras.  相似文献   

12.
A class of families of Markov chains defined on the vertices of the n-dimensional hypercube, Ω n ={0,1} n , is studied. The single-step transition probabilities P n,ij , with i,j∈Ω n , are given by Pn,ij=\frac(1-a)dij(2-a)nP_{n,ij}=\frac{(1-{\alpha})^{d_{ij}}}{(2-{\alpha})^{n}}, where α∈(0,1) and d ij is the Hamming distance between i and j. This corresponds to flip independently each component of the vertex with probability \frac1-a2-a\frac{1-{\alpha}}{2-{\alpha}}. The m-step transition matrix Pn,ijmP_{n,ij}^{m} is explicitly computed in a close form. The class is proved to exhibit cutoff. A model-independent result about the vanishing of the first m terms of the expansion in α of Pn,ijmP_{n,ij}^{m} is also proved.  相似文献   

13.
We consider attractive particle systems in \mathbb Zd{\mathbb {Z}^d} with product invariant measures. We prove that when particles are restricted to a subset of \mathbb Zd{\mathbb {Z}^d} , with birth and death dynamics at the boundaries, the hydrodynamic limit is given by the unique entropy solution of a conservation law, with boundary conditions in the sense of Bardos et al. (Comm Part Diff Equ 4:1017–1034, 1979). For the hydrostatic limit between parallel hyperplanes, we prove a multidimensional version of the phase diagram conjectured in Popkov and Schütz (Europhys Lett 48:257–263, 1999), and show that it is robust with respect to perturbations of the boundaries.  相似文献   

14.
The quantum state of a d-dimensional system can be represented by a probability distribution over the d 2 outcomes of a Symmetric Informationally Complete Positive Operator Valued Measure (SIC-POVM), and then this probability distribution can be represented by a vector of \mathbb Rd2-1\mathbb {R}^{d^{2}-1} in a (d 2−1)-dimensional simplex, we will call this set of vectors Q\mathcal{Q}. Other way of represent a d-dimensional system is by the corresponding Bloch vector also in \mathbb Rd2-1\mathbb {R}^{d^{2}-1}, we will call this set of vectors B\mathcal{B}. In this paper it is proved that with the adequate scaling B=Q\mathcal{B}=\mathcal{Q}. Also we indicate some features of the shape of Q\mathcal{Q}.  相似文献   

15.
The Einstein-Cartan-Sciama-Kibble theory of gravity naturally extends general relativity to account for the intrinsic spin of matter. Spacetime torsion, generated by spin of Dirac fields, induces gravitational repulsion in fermionic matter at extremely high densities and prevents the formation of singularities. Accordingly, the big bang is replaced by a bounce that occurred when the energy density e μ gT4{\epsilon \propto gT^4} was on the order of n2/mPl2{n^2/m_{\rm Pl}^2} (in natural units), where n μ gT3{n \propto gT^3} is the fermion number density and g is the number of thermal degrees of freedom. If the early Universe contained only the known standard-model particles (g ≈ 100), then the energy density at the big bounce was about 15 times larger than the Planck energy. The minimum scale factor of the Universe (at the bounce) was about 1032 times smaller than its present value, giving ≈ 50 μm. If more fermions existed in the early Universe, then the spin-torsion coupling causes a bounce at a lower energy and larger scale factor. Recent observations of high-energy photons from gamma-ray bursts indicate that spacetime may behave classically even at scales below the Planck length, supporting the classical spin-torsion mechanism of the big bounce. Such a classical bounce prevents the matter in the contracting Universe from reaching the conditions at which a quantum bounce could possibly occur.  相似文献   

16.
If X = X(t, ξ) is the solution to the stochastic porous media equation in O ì Rd, 1 £ d £ 3,{\mathcal{O}\subset \mathbf{R}^d, 1\le d\le 3,} modelling the self-organized criticality (Barbu et al. in Commun Math Phys 285:901–923, 2009) and X c is the critical state, then it is proved that ò0m(O\Ot0)dt < ¥,\mathbbP-a.s.{\int^{\infty}_0m(\mathcal{O}{\setminus}\mathcal{O}^t_0)dt<{\infty},\mathbb{P}\hbox{-a.s.}} and limt?¥ òO|X(t)-Xc|dx = l < ¥, \mathbbP-a.s.{\lim_{t\to{\infty}} \int_\mathcal{O}|X(t)-X_c|d\xi=\ell<{\infty},\ \mathbb{P}\hbox{-a.s.}} Here, m is the Lebesgue measure and Otc{\mathcal{O}^t_c} is the critical region {x ? O; X(t,x)=Xc(x)}{\{\xi\in\mathcal{O}; X(t,\xi)=X_c(\xi)\}} and X c (ξ) ≤ X(0, ξ) a.e. x ? O{\xi\in\mathcal{O}}. If the stochastic Gaussian perturbation has only finitely many modes (but is still function-valued), limt ? ¥ òK|X(t)-Xc|dx = 0{\lim_{t \to {\infty}} \int_K|X(t)-X_c|d\xi=0} exponentially fast for all compact K ì O{K\subset\mathcal{O}} with probability one, if the noise is sufficiently strong. We also recover that in the deterministic case  = 0.  相似文献   

17.
We review the relation between AdS spacetime in 1 $+$ 2 dimensions and the BTZ black hole (BTZbh). Later we show that a ground state in AdS spacetime becomes a thermal state in the BTZbh. We show that this is true in the bulk and in the boundary of AdS spacetime. The existence of this thermal state is tantamount to say that the Unruh effect exists in AdS spacetime and becomes the Hawking effect for an eternal BTZbh. In order to make this we use the correspondence introduced in algebraic holography between algebras of quasi-local observables associated to wedges and double cones regions in the bulk of AdS spacetime and its conformal boundary respectively. Also we give the real scalar quantum field as a concrete heuristic realization of this formalism.  相似文献   

18.
We prove the existence of a large class of one parameter families of solutions to the Einstein-Euler equations that depend on the singular parameter e = vT/c{\epsilon=v_T/c} (0 < e < e0){(0< \epsilon < \epsilon_0)}, where c is the speed of light, and v T is a typical speed of the gravitating fluid. These solutions are shown to exist on a common spacetime slab M @ [0,T)×\mathbb T3{M\cong [0,T)\times \mathbb {T}^3}, and converge as e\searrow 0{\epsilon \searrow 0} to a solution of the cosmological Poisson-Euler equations of Newtonian gravity. Moreover, we establish that these solutions can be expanded in the parameter e{\epsilon} to any specified order with expansion coefficients that satisfy e{\epsilon}-independent (nonlocal) symmetric hyperbolic equations.  相似文献   

19.
In this paper, we prove a maximum principle for a frequency localized transport-diffusion equation. As an application, we prove the local well-posedness of the supercritical quasi-geostrophic equation in the critical Besov spaces \mathringB1-a¥,q{\mathring{B}^{1-\alpha}_{\infty,q}}, and global well-posedness of the critical quasi-geostrophic equation in \mathringB0¥,q{\mathring{B}^{0}_{\infty,q}} for all 1 ≤ q < ∞. Here \mathringBs¥,q {\mathring{B}^{s}_{\infty,q} } is the closure of the Schwartz functions in the norm of Bs¥,q{B^{s}_{\infty,q}}.  相似文献   

20.
We consider the Yang–Mills flow equations on a reductive coset space G/H and the Yang–Mills equations on the manifold \mathbbR×G/H{\mathbb{R}\times G/H}. On non-symmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang–Mills equations to f4{\phi^4}-kink equations on \mathbbR{\mathbb{R}}. Depending on the boundary conditions and torsion, we obtain solutions to the Yang–Mills equations describing instantons, chains of instanton–anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on \mathbbR×G/H{\mathbb{R}\times G/H}, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang–Mills flow equations and compare them with the Yang–Mills solutions on \mathbbR×G/H{\mathbb{R}\times G/H}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号