首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gain characteristics of ErxY2 − xSiO5 waveguide amplifiers have been investigated by solving rate equations and propagation equations. The gain at 1.53 μm as a function of waveguide length, Er3+ concentration and pump power is studied pumping at three different wavelengths of 654 nm, 980 nm and 1480 nm, respectively. The optimum Er3+ concentrations of 1 × 1021 cm− 3-2 × 1021 cm− 3 with the high gain are obtained for all three pump wavelengths. Pumping at 654 nm wavelength is shown to be the most efficient one due to weak cooperative upconversion. A maximum 16 dB gain at 1 mm waveguide length under a 30 mW pump with Er3+ concentration of 1 × 1021 cm− 3 is demonstrated pumping at 654 nm wavelength.  相似文献   

2.
Er3+/Ce3+ codoped bismuth-germanate glasses with the composition of Bi2O3-GeO2-Ga2O3-Na2O were prepared by the conventional melt-quenching method. The absorption spectra, fluorescence spectra, upconversion emission and lifetimes of Er3+ ions were measured, and the effects of Ce3+-doping on the spectroscopic properties of 1.53 μm band fluorescence of Er3+ ion were investigated based on the analysis of energy transfer between Er3+ and Ce3+ ions. The results indicate that the 1.53 μm band fluorescence intensity can be improved evidently with the Ce3+-doped concentration under the excitation of 980 nm. Meanwhile, the theoretical simulation based on the population rate equation and light power propagation equation indicates that the C + L band signal gain can also be improved dramatically by introducing Ce3+ ions into the Er3+-doped bismuth-germanate glass fiber. Therefore, it is necessary to introduce Ce3+ ions when Er3+-doped bismuth-germanate glass with low phonon energy is applied to the 1.53 μm band broad Er3+-doped fiber amplifier (EDFA).  相似文献   

3.
The comparative investigation on the spectroscopic properties of Er3+ in low phonon energy Bi2O3-GeO2-Ga2O3-Na2O glasses codoped with Ce3+ ion and added with B2O3 component, respectively, is presented. With increasing Ce2O3 content from 0 to 0.8 mol% or B2O3 content from 0 to 15 mol%, the lifetime of Er3+:4I11/2 level decreases dramatically from 607 to 283 μs or to 197 μs, and the upconversion fluorescence is quenched in both glass samples. The nonradiative energy transfer from Er3+:4I11/2→Ce3+:2F5/2 or the enhanced multiphonon relaxation process together with the energy transfer between Er3+ and OH groups are, respectively, responsible for the results. Meanwhile, the lifetime of 4I13/2 level remains almost unchanged in Er3+/Ce3+-codoped glasses whereas it decreases rapidly in B2O3-added cases. As a result, Er3+/Ce3+ codoping improves the 1.5 μm fluorescence emission intensity, however, B2O3 addition has a negative effect on it. The research results indicate that the Er3+/Ce3+-codoped bismuth glasses will be preferable for obtaining efficient 980 nm pumped EDFA.  相似文献   

4.
We have studied upconversion luminescence of colloidal solution of Y2O3 nano-particles codoped with 1 mol% Er3+ and 5 mol% Yb3+. Y2O3 nano-particles codoped with 1 mol% Er3+ and 5 mol% Yb3+ show sintering and agglomeration, because they are synthesized by firing a hydroxy carbonate precursor. Colloidal solution of Y2O3 nano-particles codoped with 1 mol% Er3+ and 5 mol% Yb3+ is prepared through two-step dispersion process and the average diameter of the primary nano-particles is about 50 nm. Under excitation with 980-nm laser diode, upconversion luminescence of colloidal solution of the primary Y2O3 nano-particles codoped with 1 mol% Er3+ and 5 mol% Yb3+ in methyl isobuthyl ketone strongly appeared near 660 nm and weakly near 550 nm.  相似文献   

5.
Photoluminescence (PL) with the bandwidth of 45 nm (1523-1568 nm at the level of 3 dB) was observed in amorphous Er2O3 films grown on to the quartz substrate by pulsed laser ablation of erbium oxide stoichiometric target. Optical transmission spectrum has been fitted to Swanepoel formula to determine the dispersion of refractive index and to extract resonance absorption peaks at 980 and 1535 nm. The maximum gain coefficient of 800 dB/cm at 1535 nm was estimated using McCumber theory and experimental spectrum of the resonance absorption. In 5.7 mm-long waveguide amplifier a theory predicts the spectral gain of 20 dB with 1.4 dB peak-to-peak flatness in the bandwidth of 31 nm (1532-1563 nm) when 73% of Er3+ ions are excited from the ground state to the 4I13/2 laser level. Strong broadband PL at room temperature and inherently flat spectral gain promise Er2O3 films for ultra-short high-gain optical waveguide amplifiers and integrated light circuits.  相似文献   

6.
We prepared Er3+ doped and Er3+/Yb3+ codoped Sb2O4 nanocrystals by the sol-gel method. The Raman, X-ray diffraction (XRD), transmission electron microscope (TEM), and photoluminescence spectra of the samples were studied. The phonon energy of the Sb2O4 nanocrystals is very low (the maximum value being 461 cm−1). The upconversion (UC) red emission of the Er3+/Yb3+ codoped sample is very strong at 975 nm laser diode excitation. The Sb2O4 nanocrystals will be a promising luminous material.  相似文献   

7.
Erbium-doped MoO3−Bi2O3−TeO2 (MBT) glasses suitable for broadband optical amplifier applications have been fabricated and characterized optically. The maximum phonon band of undoped glasses is at 915 cm−1, and the emission from the Er3+: 4I13/2 → 4I15/2 transition locates around 1.53 μm with a full width at half maximum (FWHM) of ∼80 nm. The lifetime and quantum efficiency of the 4I13/2 level are 2.13 ms and ∼90%, respectively. Under the same measurement condition, the upconversion emission intensities at 550 nm in Er3+-doped MBT glasses is about 30 times weaker than that in Er3+-doped Na2O−ZnO−TeO2 (NZT) glasses.  相似文献   

8.
The absorption and upconversion fluorescence spectra of a series of Er3+/Yb3+-codoped natrium-germanium-bismuth glasses have been studied. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. At room temperature, an upconversion efficiency of 6.1×10−2 has been obtained for the green emission from the glass with 0.5 wt% Er2O3 and 3.0 wt% Yb2O3 pumped by 980 nm radiation with an intensity of 270 W/cm2. And the “standardized” efficiency for green upconversion light is higher than that reported in lead-germanate, lead-tellurite-germanate, and silicate glasses. The results indicate that the Er3+/Yb3+-codoped natrium-germanium-bismuth oxide glass may be a potential material for developing upconversion optic devices.  相似文献   

9.
In this study, the principal role of Al2O3 on the features of the photoluminescence spectra of Tm3+ ion and upconversion phenomenon in Tm3+ and Er3+ codoped CaF2−Al2O3−P2O5−SiO2 glass system has been investigated. The concentration of Al2O3 is varied from 2 to 10 mol% while that of Er3+ and Tm3+ is fixed. IR and Raman spectral studies have indicated that there is a gradual increase in the degree of disorder in the glass network with increase in the concentration of Al2O3 up to 6.0 mol%. This is attributed to the presence of Al3+ ions in octahedral positions in larger proportions. When the glasses are doped with Tm3+ ions, the blue and red emissions were observed, whereas in Er3+ doped glasses blue, green and red emissions were observed. When the glasses are codoped with Tm3+ and Er3+ ions and excited at 790 nm, all the three emission lines were observed to be reinforced, especially in the glasses mixed with 6.0 mol% of Al2O3. The IR emission band detected at about 1.8 μm due to 3F43H6 transition of Tm3+ ions is also observed to be strengthened due to codoping. The reasons for enhancement in the intensity of various emission bands due to codoping have been identified and discussed with the help of rate equations for various emission transitions.  相似文献   

10.
Er2O3-doped TeO2-ZnO-La2O3 modified tellurite glasses were prepared by the conventional melt-quenching method, and the Er3+: 4I13/24I15/2 fluorescence properties have been studied for different Er3+ concentrations. Infrared spectra were measured in order to estimate the exact content of OH groups in samples. Based on the electric dipole-dipole interaction theory, the interaction parameter, CEr,Er, for the migration rate of Er3+: 4I13/24I13/2 in modified tellurite glass was calculated. Finally, the concentration quenching mechanism using a model based on energy transfer and quenching by hydroxyl (OH) groups was presented.  相似文献   

11.
The broadband near-IR emission has been investigated in a series of Er/Tm co-doped Bi2O3–SiO2–Ga2O3 (BSG) glasses with 800 nm laser diode as an excitation source. A broadband emission extending from 1350 to 1650 nm with a full width at half maximum (FWHM) around 165 nm is obtained in 0.2 wt% Er2O3 and 1.0 wt% Tm2O3 co-doped BSG glass. The fluorescence decay curves of glasses are measured and maximum energy transfer efficiency from Er3+ to Tm3+ reaches 71% when Tm3+ concentration is 1.0 wt%. The temperature dependence of the broadband emission spectra in Er3+–Tm3+ co-doped BSG glass is also recorded to further understand the energy-transfer processes between Er3+ and Tm3+. The present work suggests that Er/Tm co-doped BSG glasses can be a potential candidate for broadband integrated amplifier.  相似文献   

12.
Infrared optical absorption has been used to study OHimpurities into congruent co-doped LiNbO3:Cr3+:ZnO crystals doped with different Zn2+ concentration. The OH IR absorption spectra present three bands that can be associated with different OH complex centres available in the lattice. For crystals with lower Zn2+ concentrations (<4.7%) only one IR absorption band centred at 2867 nm (3490 cm−1) is reported which is associated with the OH unperturbed vibration. For crystals with higher Zn2+ concentrations (>4.7%), two new bands associated with OHvibration in distortion environment are reported. These bands are centred at 2827 nm (3537 cm−1) and 2847 nm (3512 cm−1) and can be associated with OH-Zn2+ and Cr3+(Li+)-OH-Zn2+(Int.) complex centres, respectively. Electron paramagnetic resonance (EPR) has been used to identify the Cr3+ centres in the lattice of the doped LiNbO3:ZnO crystals.  相似文献   

13.
The paper proposes a novel two stage L-band erbium doped fiber amplifier with forward–backward pumping scheme for transmission of 32 wavelength division multiplexed (WDM) channels. It is gain clamped with an in-line fiber Bragg grating (FBG) to provide flat gain over 45 nm by restricting and reutilizing amplified spontaneous emission (ASE). We demonstrate that it provides an efficient small signal gain with minimum noise figure of over 20 dB and 5.5 dB, respectively, in the L-band region (1565–1610 nm) by comparing with its forward and backward pumped counterparts with fixed Er3+ fiber length of 20 m for −30 dBm/channel input power. We also obtain the gain and noise figure dependence as a function of each of the Er3+ fiber lengths, pump power (both 1480 and 980 nm), and temperature. Hence a 10 nm region (1580–1590 nm) has been acknowledged where temperature variations become constricted for 30 °C variations (15–45 °C).  相似文献   

14.
Spectroscopic properties and energy transfer (ET) in Ga2O3-GeO2-Bi2O3-Na2O (GGBN, glass doped with Er3+ and rare earths (RE3+; RE3+=Ce3+, Tb3+) have been investigated. Intense 1.53-μm emission with the peak emission cross-section achieved to 7.58×10−21 cm2 from Er3+-doped GGBN glass has been obtained upon excitation at 980 nm. Effects of RE3+ (RE3+=Ce3+, Tb3+) codoping on the optical properties of Er3+-doped GGBN glass have been investigated and the possible ET mechanisms involved have also been discussed. Significant enhancement of the 1.53 μm emission intensity and decrease of upconversion (UC) fluorescence with increasing Ce3+ concentration have been observed. The incorporation of Tb3+ into Er3+-doped GGBN glass could significantly decrease the UC emission intensity, but meanwhile decrease the 1.53 μm emission intensity due to the ET from Er3+:4I13/2 to Tb3+:7F2. The results indicate that the incorporation of Ce3+ into Er3+-doped GGBN glass can effectively improve 1.53-μm and lower UC luminescence, which makes GGBN glass more attractive for use in C-band optical fiber amplifiers.  相似文献   

15.
The B2O3 component was introduced into Er3+/Ce3+ co-doped TeO2-ZnO-Na2O-Nb2O5 glass to improve energy transfer rate of Er3+:4I11/2→Ce3+:2F5/2 phonon-assisted cross-relaxation process. With the 6 mol% substitution of B2O3 for TeO2, the energy transfer rate increased from 1300 to 1831 s−1 and the fluorescence intensity increased by about 13.4%. However, the more B2O3 substitution in the same glass system reduced the quantum efficiency of Er3+:4I13/24I15/2 transition due to the higher OH group concentration. The results show that an appropriate amount of B2O3 component can be used to improve the phonon-assisted energy transfer rate and enhance 1.53 μm fluorescence emission by increasing the phonon energy of host glass. The effect of B2O3 on the energy transfer process, the lifetimes of the 4I11/2 and 4I13/2 levels, and the upconversion emission have also been investigated.  相似文献   

16.
A novel shooting method with excellent simple control strategy is developed for solving the failure to convergence of the traditional shooting methods themselves in fiber lasers model. Compared with the published literature, the novel shooting method provides a clear physical understanding method for getting the threshold pump power and the exact results with given random functions in Yb3+-doped fiber lasers and Er3+-doped fiber lasers. Then, the results in Er3+-doped fiber lasers and Yb3+-doped fiber lasers demonstrate that the solutions using the novel shooting method has high accuracy of 10−8 W with several iteration steps, which have extended the applicable range of the end-pumped power even lower than 1 mW pump power. Furthermore, compared with 1480 nm pump for the threshold and slope efficiencies of the Er3+-doped fiber lasers, 978 nm fiber lasers can extend wider scope of application and be pump source in the coming future. Finally, the lower threshold and higher slope efficiency at 975 nm than those of 910 nm pump in Yb3+-doped fiber lasers, 975 nm pump laser provides for broad band excellent cladding pump source.  相似文献   

17.
Optical absorption and emission spectra of Er3+/Yb3+ ions in PLZT (Pb1−xLaxZryTi1−yO3) ceramic have been studied. Based on the Judd—Ofelt (J-O) theory, the J-O intensity parameters were calculated to be Ω2=2.021×10−20 cm2, Ω4=0.423×10−20 cm2, Ω6=0.051×10−20 cm2 from the absorption spectrum of Er3+/Yb3+-codoped PLZT. The J-O intensity parameters have been used to calculate the radiative lifetimes and the branching ratios for some excited 4I13/2, 4I11/2, 4I9/24F9/2, and 4S3/2 levels of Er3+ ion. The stimulated emission cross-section (8.24×10−21 cm2) was evaluated for the 4I13/24I15/2 transition of Er3+. The upconversion emissions at 538, 564, and 666 nm have been observed in Er3+/Yb3+-codoped PLZT by exciting at 980 nm, and their origins were identified and analyzed.  相似文献   

18.
Variations of fluorescence intensity ratio of green (generated from Er3+ 2H11/2 and 4S3/2 levels) and red (generated from the sublevels of Er3+ 4F9/2 level) upconversion emissions in Er3+/Yb3+/Li+:ZrO2 nanocrystals have been studied as a function of temperature under 976 nm laser diode excitation. In the temperature range of 323-673 K, the maximum sensitivities of about 0.0134 K− 1 and 0.0104 K− 1 are obtained by using green and red emission, respectively. Er3+/Yb3+/Li+:ZrO2 nanocrystals show potential application value in nanoscale thermal sensor.  相似文献   

19.
Uniform Yb3+ and Er3+-codoped Y2O3 hollow microspheres were synthesized via urea co-precipitation using carbon spheres as templates. Intense red emission (4F9/24I15/2) and weak green emission (2H11/2, 4S3/24I15/2) of Er3+ were observed for the Yb3+ and Er3+-codoped Y2O3 hollow microspheres under 980 nm infrared excitation. The integrated intensity of visible emission and the ratio of red to green were found to be strongly dependent on the amount of carbon sphere templates and the concentration of Yb3+ ions. The amount of carbon sphere templates also plays an important role in adjusting the size of crystallite. Multi-phonon relaxation resulted from the absorbents (OH and CO32−) on the surface of the crystallite, and efficient occur of energy transfer processes and cross-relaxation between Er3+ and Yb3+ are responsible for the enhancement of intensity ratio of red to green emission. Interestingly, for higher concentration of Yb3+ ions, the green emission is assigned to a three-phonon process in Y2O3:Yb/Er hollow microspheres, which also could result in the increase of the red to green emission ratio. An explanation to account for these behaviors was presented.  相似文献   

20.
(Y0.95Er0.05)2O3 single-crystalline nanorods with intense red emission via up-conversion are synthesized by a hydrothermal method under modest reaction conditions. Green and red emissions are observed for both as-synthesized sample and post-treated sample after excitation at 488 nm and with upconversion pumping (810 nm). The experimental results indicate that the stokes and up-conversion luminescence of the post-treated (500 °C for 2 h) Y2O3:Er nanorods is more efficient than those of as-prepared materials. The increase of the Stokes luminescence may result from the improved crystallization, smooth surface and uniform diameter distribution. The enhanced red emission via upconversion is due to removal of part of surface contaminants, such as CO32− and OH. It is believed that a new mechanism is responsible for populating the 4S3/2 and 4F9/2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号