首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An inductively coupled plasma mass spectrometer (ICP-MS) was used as an ion chromatographic detector for the speciation of iodine and bromine. Gradient elution using NH4NO3 at pH 10 allowed the chromatographic separation of ionic iodine (I- and IO3-) and bromine (Br- and BrO3-) species in less than 8 min. Effluents from the ion-exchange column were delivered to the nebulization system of ICP-MS for the determination of I and Br. The potentially interfering 38Ar40ArH+ and 40Ar40ArH+ at the bromine masses m/z 79 and 81 were significantly reduced in intensity (by approximately two orders of magnitude) by using 0.6 mL min(-1) O2 as a reactive cell gas in the dynamic reaction cell (DRC). Moreover, the signal-to-background ratio at iodine mass m/z 127 increased significantly when O2 was used as the reaction gas. The detection limits were in the range of 0.001-0.002 and 0.03-0.04 ng mL(-1) for various I and Br compounds, respectively, based on the peak height. The relative standard deviation of the peak areas for five injections of a 2 ng mL(-1) I-, IO3- and 20 ng mL(-1) Br-, BrO3- mixture was in the range of 3-4%. The concentrations of I and Br compounds have been determined in selected water and urine samples. The spike recoveries were in the range of 94-102% for all of the determinations. This method has also been applied to determine various I and Br compounds in an NIST RM 8435 whole-milk powder reference material and a seaweed sample obtained locally. A microwave-assisted extraction method was used to extract these compounds, which were quantitatively leached with a 10% mass/volume (m/v) tetramethylammonium hydroxide (TMAH) solution in a focused microwave field within a period of 6 min. The major components of I and Br in milk powder and seaweed were I- and Br-.  相似文献   

2.
This report details a photoelectron spectroscopy (PES) and theoretical investigation of electron affinities (EAs) and electronic structures of several atmospherically relevant higher bromine and iodine oxide molecules in the gas phase. PES spectra of BrO(2)(-) and IO(2)(-) were recorded at 12 K and four photon energies--355 nm/3.496 eV, 266 nm/4.661 eV, 193 nm/6.424 eV, and 157 nm/7.867 eV--while BrO(3)(-), IO(3)(-), and IO(4)(-) were only studied at 193 and 157 nm due to their expected high electron binding energies. Spectral features corresponding to transitions from the anionic ground state to the ground and excited states of the neutral are unraveled and resolved for each species. The EAs of these bromine and iodine oxides are experimentally determined for the first time (except for IO(2)) to be 2.515 ± 0.010 (BrO(2)), 2.575 ± 0.010 (IO(2)), 4.60 ± 0.05 (BrO(3)), 4.70 ± 0.05 (IO(3)), and 6.05 ± 0.05 eV (IO(4)). Three low-lying excited states along with their respective excitation energies are obtained for BrO(2) [1.69 (A (2)B(2)), 1.79 (B (2)A(1)), 1.99 eV (C (2)A(2))], BrO(3) [0.7 (A (2)A(2)), 1.6 (B (2)E), 3.1 eV (C (2)E)], and IO(3) [0.60 (A (2)A(2)), 1.20 (B (2)E), ~3.0 eV (C (2)E)], whereas six excited states of IO(2) are determined along with their respective excitation energies of 1.63 (A (2)B(2)), 1.73 (B (2)A(1)), 1.83 (C (2)A(2)), 4.23 (D (2)A(1)), 4.63 (E (2)B(2)), and 5.23 eV (F (2)B(1)). Periodate (IO(4)(-)) possesses a very high electron binding energy. Only one excited state feature with 0.95 eV excitation energy is shown in the 157 nm spectrum. Accompanying theoretical calculations reveal structural changes from the anions to the neutrals, and the calculated EAs are in good agreement with experimentally determined values. Franck-Condon factors simulations nicely reproduce the observed vibrational progressions for BrO(2) and IO(2). The low-lying excited state information is compared with theoretical calculations and discussed with their atmospheric implications.  相似文献   

3.
A selective and simple method for the determination of iodate (IO3-) and bromate (BrO3-) by microcolumn ion chromatography (IC) is presented. In this study, IO3- and BrO3- were determined as IBr2- and tribromide (Br3-), respectively, via a postcolumn reaction with bromide (Br) under acidic conditions with the aid of alpha-cyclodextrin (alpha-CD) in microcolumn IC. IO3- and BrO3- were selectively detected by the present method at a wavelength of 253 or 265 nm. The present system achieved good selectivity for IO3- and BrO3- as well as good repeatability under suitable conditions. Precolumn enrichment improved the detection limit, and allowed the determination of BrO3- in bottled water as low as sub microg L(-1) level in microcolumn IC.  相似文献   

4.
Johar GS 《Talanta》1974,21(9):973-974
The formation of an intense brownish-maroon or maroon-red product by the interaction of silver(I) and bismuth(III) solution in the presence of iodide forms the basis of a new and specific spot-test procedure for silver. The test is conducted on a spot plate with 2 or 3 drops of 2% potassium iodide solution, 1 drop of 1% bismuth(III) nitrate solution, and 1 drop of test solution. Limit of detection is 0.01 mug; limit of dilution is 1:5 x 10(6). Most cations and anions do not interfere. Only Tl(I), Cs, S(2)O(2-)(3), EDTA, pyridine, excess of thiourea, oxidizing ions (NO(-)(2), IO(-)(3), IO(-)(4), MnO(-)(4), BrO(-)(3), and S(2)O(2-)(8)) and ions such as Cl(-), Br(-), I(-), SCN(-), and N(-)(3) which cause precipitation of silver, interfere. The product formed is most probably Ag(2)BiI(5).  相似文献   

5.
A bioavailability study based on an in vitro dialyzability approach has been applied to assess the bio-available fractions of iodine and bromine species from edible seaweed. Iodide, iodate, 3-iodo-tyrosine (MIT), 3,5-diiodo-tyrosine (DIT), bromide and bromate were separated by anion exchange chromatography under a gradient elution mode (175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase, and flow rates within the 0.5–1.5 mL min−1 range). Inductively coupled plasma-mass spectrometry (ICP-MS) was used as a selective detector for iodine (127I) and bromine (79Br). Low dialyzability ratios (within the 2.0–18% range) were found for iodine species; whereas, moderate dialyzability percentages (from 9.0 to 40%) were obtained for bromine species. Iodide and bromide were the major species found in the dialyzates from seaweed, although MIT and bromate were also found in the dialyzates from most of the seaweed samples analysed. However, DIT was only found in dialyzates from Wakame, Kombu, and NIES 09 (Sargasso) certified reference material; whereas, iodate was not found in any dialyzate. Iodine dialyzability was found to be dependent on the protein content (negative correlation), and on the carbohydrate and dietary fibre levels (positive correlation). However, bromine dialyzability was only dependent on the protein amount in seaweed (negative correlation).  相似文献   

6.
Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.  相似文献   

7.
Chloride ion catalyzes the reactions of HOBr with bromite and chlorite ions in phosphate buffer (p[H(+)] 5 to 7). Bromine chloride is generated in situ in small equilibrium concentrations by the addition of excess Cl(-) to HOBr. In the BrCl/ClO(2)(-) reaction, where ClO(2)(-) is in excess, a first-order rate of formation of ClO(2) is observed that depends on the HOBr concentration. The rate dependencies on ClO(2)(-), Cl(-), H(+), and buffer concentrations are determined. In the BrCl/BrO(2)(-) reaction where BrCl is in pre-equilibrium with the excess species, HOBr, the loss of absorbance due to BrO(2)(-) is followed. The dependencies on Cl(-), HOBr, H(+), and HPO(4)(2)(-) concentrations are determined for the BrCl/BrO(2)(-) reaction. In the proposed mechanisms, the BrCl/ClO(2)(-) and BrCl/BrO(2)(-) reactions proceed by Br(+) transfer to form steady-state levels of BrOClO and BrOBrO, respectively. The rate constant for the BrCl/ClO(2)(-) reaction [k(Cl)(2)]is 5.2 x 10(6) M(-1) s(-1) and for the BrCl/BrO(2)(-) reaction [k(Br)(2)]is 1.9 x 10(5) M(-1) s(-1). In the BrCl/ClO(2)(-) case, BrOClO reacts with ClO(2)(-) to form two ClO(2) radicals and Br(-). However, the hydrolysis of BrOBrO in the BrCl/BrO(2)(-) reaction leads to the formation of BrO(3)(-) and Br(-).  相似文献   

8.
Lente G  Fábián I 《Inorganic chemistry》2004,43(13):4019-4025
The effect of dissolved oxygen on the acid-dependent disproportionation of dithionate ion (S(2)O(6)(2-)) and its oxidation with a number of reagents (I(2), Br(2), I(3)(-), Br(3)(-), IO(3)(-), BrO(3)(-), IO(4)(-), MnO(4)(-), Cr(VI), Ce(VI), and H(2)O(2)) were studied. Dithionate ion is remarkably inert at room temperature, and heating to elevated temperatures (50-90 degrees C) was necessary to observe detectable reaction rates in all of these processes. It was confirmed that dithionate ion is never oxidized directly; its redox reactions are zeroth-order with respect to the oxidizing agent and proceed through disproportionation and subsequent fast oxidation of the sulfur(IV) formed. The effect of dissolved oxygen is attributable to its reaction with sulfur(IV) produced in the disproportionation. This autoxidation occurs only with a catalyst. Cerium(III) and iodide ions were shown to catalyze the autoxidation, and their effect on the kinetic traces was studied. In a few cases, highly unusual kinetic traces, such as straight lines with sharp break points, inverted parabolas, and a combination of these, were detected and successfully interpreted in terms of simple kinetic and stoichiometric considerations.  相似文献   

9.
A method for the microdetermination of organic compounds containing halogens, by a polarographic finish, is reported. After the combustion of the organic sample in the oxygen flask, the products are absorbed in a suitable absorbent and chemically treated to produce Cl(-), Br(-), BrO(3)(-) or IO(3)(-) ions in solution before the polarography. The method is applicable to partially, highly, and fully halogenated aromatic and aliphatic compounds, whether solid or liquid. The results are generally within the acceptable limits of error.  相似文献   

10.
The kinetics and mechanism of oxidation of tetramethylthiourea (TTTU) by bromine and acidic bromate has been studied in aqueous media. The kinetics of reaction of bromate with TTTU was characterized by an induction period followed by formation of bromine. The reaction stoichiometry was determined to be 4BrO(3)(-) + 3(R)(2)C═S + 3H(2)O → 4Br(-) + 3(R)(2)C═O + 3SO(4)(2-) + 6H(+). For the reaction of TTTU with bromine, a 4:1 stoichiometric ratio of bromine to TTTU was obtained with 4Br(2) + (R)(2)C═S + 5H(2)O → 8Br(-) + SO(4)(2-) + (R)(2)C═O + 10H(+). The oxidation pathway went through the formation of tetramethythiourea sulfenic acid as evidenced by the electrospray ionization mass spectrum of the dynamic reaction solution. This S-oxide was then oxidized to produce tetramethylurea and sulfate as final products of reaction. There was no evidence for the formation of the sulfinic and sulfonic acids in the oxidation pathway. This implicates the sulfoxylate anion as a precursor to formation of sulfate. In aerobic conditions, this anion can unleash a series of genotoxic reactive oxygen species which can explain TTTU's observed toxicity. A bimolecular rate constant of 5.33 ± 0.32 M(-1) s(-1) for the direct reaction of TTTU with bromine was obtained.  相似文献   

11.
Ozone reactions with XO(2)(-) (X = Cl or Br) are studied by stopped-flow spectroscopy under pseudo-first-order conditions with excess XO(2)(-). The O(3)/XO(2)(-) reactions are first-order in [O(3)] and [XO(2)(-)], with rate constants k(1)(Cl) = 8.2(4) x 10(6) M(-1) s(-1) and k(1)(Br) = 8.9(3) x 10(4) M(-1) s(-1) at 25.0 degrees C and mu = 1.0 M. The proposed rate-determining step is an electron transfer from XO(2)(-) to O(3) to form XO(2) and O(3)(-). Subsequent rapid reactions of O(3)(-) with general acids produce O(2) and OH. The OH radical reacts rapidly with XO(2)(-) to form a second XO(2) and OH(-). In the O(3)/ClO(2)(-) reaction, ClO(2) and ClO(3)(-) are the final products due to competition between the OH/ClO(2)(-) reaction to form ClO(2) and the OH/ClO(2) reaction to form ClO(3)(-). Unlike ClO(2), BrO(2) is not a stable product due to its rapid disproportionation to form BrO(2)(-) and BrO(3)(-). However, kinetic spectra show that small but observable concentrations of BrO(2) form within the dead time of the stopped-flow instrument. Bromine dioxide is a transitory intermediate, and its observed rate of decay is equal to half the rate of the O(3)/BrO(2)(-) reaction. Ion chromatographic analysis shows that O(3) and BrO(2)(-) react in a 1/1 ratio to form BrO(3)(-) as the final product. Variation of k(1)(X) values with temperature gives Delta H(++)(Cl) = 29(2) kJ mol(-1), DeltaS(++)(Cl) = -14.6(7) J mol(-1) K(-1), Delta H(++)(Br) = 54.9(8) kJ mol(-1), and Delta S(++)(Br) = 34(3) J mol(-1) K(-1). The positive Delta S(++)(Br) value is attributed to the loss of coordinated H(2)O from BrO(2)(-) upon formation of an [O(3)BrO(2)(-)](++) activated complex.  相似文献   

12.
Johar GS 《Talanta》1974,21(9):970-972
New and very simple spot tests are described for the detection of Bi(III), Cu(II) and I(-) ions with limits of detection of 3, 8, and 75 mug/0.05 ml respectively. Tests are also described for such combinations as Bi(III) + I(-); Bi(III) + Cu(II); and Bi(III) + Cu(II) + I(-). All the tests are based on the formation of an orange or red-orange precipitate of bismuth(III)-copper(I)-iodide-thiourea complex, for which the formula [Bi(tu)(3)I(3).Cu(tu)(3)I] (where tu = thiourea) is proposed. This complex is produced in various ways by the interaction of Bi(III), Cu(II), and I(-) ions with thiourea. Most cations and anions do not interfere, but Tl(I), Cs(I), SO(2-)(3), S(2)O(2-)(3), EDTA, and oxidizing ions such as NO(-)(2), IO(-)(3), IO(-)(4), BrO(-)(3), and MnO(-)(4) do. The complex hexakis(thioureato)sulphatomonoaquodicopper(I) [Cu(2)(tu)(6)SO(4).H(2)O] is proposed as a new spot-test reagent for Bi(III) and I(-) ions, although the sensitivity for the latter is poor.  相似文献   

13.
A new reversed-phase liquid chromatograhy/electrospray ionization tandem mass spectrometry method was developed for the analysis of perchlorate in water. The improved separation of perchlorate from common anions along with sample dilution effectively reduced matrix effects, primarily ion suppression caused by common anions. The (18)O-enriched perchlorate used as an internal standard provided further compensation for potential changes associated with instrument sensitivity, retention time shifting, peak broadening, ion suppression, and other matrix effects. The mean recoveries and relative standard deviations were 92-107% and 2.5-9.5% for simulated water matrix spikes at 0.05-1.0 microg/L, and 80-106% and 3.8-13% for real water sample matrix spikes at 2.0 microg/L, respectively. The method detection limits were 0.007 microg/L for reagent water and 0.014 microg/L for the simulated water matrix that contained 100 mg/L of SO(4)(2-), CO(3)(2-), and Cl(-) anions; 2 mg/L of PO(4)(3-) as P and NO(3)(-) as N; and 0.1 mg/L of Br(-), BrO(3)(-), ClO(2)(-), ClO(3)(-), and F(-) anions in reagent water, respectively. When using cartridge pretreatment to remove problematic SO(4)(2-), CO(3)(2-), and Cl(-) anions, the minimum reporting level could be set to 0.05 microg/L or lower. With 10-fold dilution, the minimum reporting level was conservatively set to 0.5 microg/L.  相似文献   

14.
A coupled cluster composite approach has been used to accurately determine the spectroscopic constants, bond dissociation energies, and heats of formation for the X1(2)II(3/2) states of the halogen oxides ClO, BrO, and IO, as well as their negative ions ClO-, BrO-, and IO-. After determining the frozen core, complete basis set (CBS) limit CCSD(T) values, corrections were added for core-valence correlation, relativistic effects (scalar and spin-orbit), the pseudopotential approximation (BrO and IO), iterative connected triple excitations (CCSDT), and iterative quadruples (CCSDTQ). The final ab initio equilibrium bond lengths and harmonic frequencies for ClO and BrO differ from their accurate experimental values by an average of just 0.0005 A and 0.8 cm-1, respectively. The bond length of IO is overestimated by 0.0047 A, presumably due to an underestimation of molecular spin-orbit coupling effects. Spectroscopic constants for the spin-orbit excited X2(2)III(1/2) states are also reported for each species. The predicted bond lengths and harmonic frequencies for the closed-shell anions are expected to be accurate to within about 0.001 A and 2 cm-1, respectively. The dissociation energies of the radicals have been determined by both direct calculation and through use of negative ion thermochemical cycles, which made use of a small amount of accurate experimental data. The resulting values of D0, 63.5, 55.8, and 54.2 kcal/mol for ClO, BrO, and IO, respectively, are the most accurate ab initio values to date, and those for ClO and BrO differ from their experimental values by just 0.1 kcal/mol. These dissociation energies lead to heats of formation, DeltaH(f) (298 K), of 24.2 +/- 0.3, 29.6 +/- 0.4, and 29.9 +/- 0.6 kcal/mol for ClO, BrO, and IO, respectively. Also, the final calculated electron affinities are all within 0.2 kcal/mol of their experimental values. Improved pseudopotential parameters for the iodine atom are also reported, together with revised correlation consistent basis sets for this atom.  相似文献   

15.
All pH-oscillators reported to date function only under open (flow reactor) conditions. We describe an approach to generating pH-oscillations in a closed system by starting from an open system pH-oscillator, finding semibatch conditions under which it oscillates with an inflow of a single reactant to an otherwise closed reactor containing the remaining components, and replacing this inflow with a layer of silica gel impregnated with the key reactant. We present data showing the successful application of this technique to the BrO(3)(-)-Mn(2+)-SO(3)(2-), IO(3)(-)-Fe(CN)(6)(4-)-SO(3)(2-), and BrO(3)(-)-Fe(CN)(6)(4-)-SO(3)(2-) systems. In all three cases, sulfite ion is the species that is replenished via dissolution from the gel layer.  相似文献   

16.
Humic substances that preferentially adsorb at the air/water interfaces of water or aerosols consist of both fulvic and humic acid. To investigate the chemical reactivity for the heterogeneous reaction of gaseous ozone, O(3)(g), with aqueous iodide, I(-)(aq), in the presence of standard fulvic acid, humic acid, or alcohol, cavity ring-down spectroscopy was used to detect gaseous products, iodine, I(2)(g) and an iodine monoxide radical, IO(g). Fulvic acid enhanced the I(2)(g) production yield, but not the IO(g) yield. Humic acid, n-hexanol, n-heptanol, and n-octanol did not affect the yields of I(2)(g) or IO(g). We can infer that the carboxylic group contained in fulvic acid promotes the I(2)(g) emission by supplying the requisite interfacial protons more efficiently than water on its surface.  相似文献   

17.
The BrO(3)F(2)(-) anion has been prepared by reaction of BrO(3)F with the fluoride ion donors KF, RbF, CsF, [N(CH(3))(4)][F], and NOF. The BrO(3)F(2)(-) anion is only the fourth Br(VII) species to have been isolated in macroscopic quantities, and it is one of only three oxide fluorides that possess D(3)(h)() symmetry, the others being XeO(3)F(2) and OsO(3)F(2). The fluoride ion acceptor properties of BrO(3)F contrast with those of ClO(3)F, which does not react with the strong fluoride ion donor [N(CH(3))(4)][F] to form the analogous ClO(3)F(2)(-) salt. The single-crystal X-ray structures of [NO](2)[BrO(3)F(2)][F] and [N(CH(3))(4)][BrO(3)F(2)] confirm the D(3)(h)() symmetry of the BrO(3)F(2)(-) anion and provide accurate Br-O (1.593(3)-1.610(6) A) and Br-F (1.849(5)-1.827(4) A) bond lengths. The salt, [NO](2)[BrO(3)F(2)][F], is fully ordered, crystallizing in the monoclinic space group, C2/c, with a = 9.892(3) A, b = 12.862(4) A, c = 10.141(4) A, beta = 90.75(2) degrees , V = 12460(7) A(3), Z = 4, and R(1) = 0.0671 at -173 degrees C, whereas [N(CH(3))(4))][BrO(3)F(2)] exhibits a 2-fold disorder of the anion, crystallizing in the tetragonal space group, P4/nmm, with a = 8.5718(7) A, c = 5.8117(6) A, V = 427.02(7) A(3), Z = 2, and R(1) = 0.0314 at -173 degrees C. The (19)F chemical shift of [N(CH(3))(4))][BrO(3)F(2)] in CH(3)CN is 237.0 ppm and is more deshielded than those of the previously investigated Br(VII) species, BrO(3)F and BrF(6)(+). The vibrational frequencies of the BrO(3)F(2)(-) anion were determined by use of Raman and infrared spectroscopy and were assigned with the aid of electronic structure calculations and by analogy with the vibrational assignments reported for XeO(3)F(2) and OsO(3)F(2). The internal and symmetry force constants of BrO(3)F(2)(-) were determined by use of general valence force field and B-matrix methods, respectively, and are compared with those of XeO(3)F(2), OsO(3)F(2), and the unknown ClO(3)F(2)(-) anion. The instability of ClO(3)F(2)(-) relative to BrO(3)F(2)(-) has been investigated by electronic structure calculations and rationalized in terms of atomic charges, Mayer bond orders, and Mayer valencies, and the enthalpies of fluoride ion attachment to BrO(3)F and ClO(3)F.  相似文献   

18.
样品中的有机碘高温灰化后,在酸性条件下,经饱和溴水将I^-氧化为IO3^-.在0.06%的磷酸酸度条件下,以KI还原KIO3,使样品中的碘放大六倍。系统优化选择了定波长、磷酸酸度、氯化钠质量浓度、淀粉用量、碘化钾用量等。在选定的最佳实验条件下,碘质量浓度在0~3.2μg/mL范围旱良好线性关系,相关系数为0.9995;方法榆出限为0.028μg/mL,回收率为96.27%~106.43%。  相似文献   

19.
The reaction between BrO2(-) and excess HOCl (p[H+] 6-7, 25.0 degrees C) proceeds through several pathways. The primary path is a multistep oxidation of HOCl by BrO(2)(-) to form ClO(3)(-) and HOBr (85% of the initial 0.15 mM BrO(2)(-)). Another pathway produces ClO(2) and HOBr (8%), and a third pathway produces BrO(3)(-) and Cl(-) (7%). With excess HOCl concentrations, Cl(2)O also is a reactive species. In the proposed mechanism, HOCl and Cl(2)O react with BrO(2)(-) to form steady-state species, HOClOBrO(-) and ClOClOBrO(-). Acid facilitates the conversion of HOClOBrO(-) and ClOClOBrO(-) to HOBrOClO(-). These reactions require a chainlike connectivity of the intermediates with alternating halogen-oxygen bonding (i.e. HOBrOClO(-)) as opposed to Y-shaped intermediates with a direct halogen-halogen bond (i.e. HOBrCl(O)O(-)). The HOBrOClO(-) species dissociates into HOBr and ClO(2)(-) or reacts with general acids to form BrOClO. The distribution of products suggests that BrOClO exists as a BrOClO.HOCl adduct in the presence of excess HOCl. The primary products, ClO(3)(-) and HOBr, are formed from the hydrolysis of BrOClO.HOCl. A minor hydrolysis path for BrOClO.HOCl gives BrO(3)(-) and Cl(-). An induction period in the formation of ClO(2) is observed due to the buildup of ClO(2)(-), which reacts with BrOClO.HOCl to give 2 ClO(2) and Br(-). Second-order rate constants for the reactions of HOCl and Cl(2)O with BrO(2)(-) are k(1)(HOCl) = 1.6 x 10(2) M(-1) s(-1) and k(1)(Cl)()2(O) = 1.8 x 10(5) M(-)(1) s(-)(1). When Cl(-) is added in large excess, a Cl(2) pathway exists in competition with the HOCl and Cl(2)O pathways for the loss of BrO(2)(-). The proposed Cl(2) pathway proceeds by Cl(+) transfer to form a steady-state ClOBrO species with a rate constant of k(1)(Cl2) = 8.7 x 10(5) M(-1) s(-1).  相似文献   

20.
Reversed-phase liquid chromatography was coupled to a multi-detection system composed of ultraviolet (UV) detection, evaporative laser scattering detection (ELSD) and inductively coupled plasma mass spectrometry (ICP-MS). By applying the principle of post-column solvent compensation, the organic modifier content was kept constant in ELSD and ICP-MS under gradient elution. Chlorine ((35)Cl), bromine ((79)Br and (81)Br) and sulfur ((34)S) were monitored in several pharmaceutical compounds. The limit of quantitation (LOQ) was 80 ng/mL for chlorine (chlorpropamide) and 2 ng/mL for bromine (bromazepam). Calibration graphs were linear from 1.0 microg/mL to 100 microg/mL for chlorpropamide (r(2) 0.990) and from 10 ng/mL to 500 ng/mL for bromazepam (r(2) 0.996). The low LOQ value for bromine allows to quantify bromine in pharmaceutical samples below the 0.05% level of the active pharmaceutical ingredient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号