首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The cathodic stripping voltammetry of copper(II) was investigated with a method, based on the adsorptive accumulation of the Cu(II)-salicylideneamino-2-thiophenol (SATP) complex on a hanging mercury drop electrode. The copper(II)-SATP complex could be accumulated on the electrode at –0.20 V in 0.01 mol/l nitric acid. The reduction peak of the copper complex was observed by scanning the potential in a negative direction in the differential pulse mode. The calibration curve for copper was linear over the range 5×10–9–1×10–7 mol/l. This method was applied to determine copper(II) in GSJ (Geological Survey of Japan) standard rock reference materials.  相似文献   

2.
Guanine is determined at the 5.0×10–10 –2.0×10–7 mol/l level by differential-pulse adsorptive stripping voltammetry at a hanging mercury drop electrode using the reduction peak of its copper (II) complex at –0.21 V vs. Ag-AgCl electrode. The optimum analytical conditions were found to be Britton-Robinson buffer solution (pH 4.8), an accumulation potential of 0.0 V and an accumulation time of 3 min. Under these conditions, the detection limit is 5.0×10–10 mol/l and the relative standard deviation 2.6% for 1.0×10–7 mol/l guanine. The method is compared with the previous voltammetric methods. The presence of some purine derivatives does not interfere.  相似文献   

3.
A novel solvent polymeric membrane electrode based on bis(1,3,4-thiadiazole) complexes of Hg(II) is described which has excellent selectivity and sensitivity toward iodide ion. The electrode, containing 1,4-bis(5-methyl-1,3,4-thiadiazole-2-yl-thio)butanemercury(II) [Hg(II)BMTB(NO3)4], has a Nernstian potentiometric response from 2.0×10–8 to 2.0×10–2 mol L–1 with a detection limit of 8.0×10–9 mol L–1 and a slope of –59.0±0.5 mV/decade in 0.01 mol L–1 phosphate buffer solution (pH 3.0, 20°C). The selectivity sequence observed is iodide>bromide>thiocyanate>nitrite>nitrate>chloride>perchlorate>acetate>sulfate. The selectivity behavior is discussed in terms of the UV–Vis spectrum, and the process of transfer of iodide across the membrane interface is investigated by use of the AC impedance technique. The electrode was successfully applied to the determination of iodide in Jialing River and Spring in Jinyun Mountains, with satisfactory results.  相似文献   

4.
The voltammetric behaviour of a 2-mercaptoimidazole (2-MI) containing carbon paste electrode was studied. When mixed to carbon paste as an electrode modifier, 2-MI can be reduced at negative potentials (–1 V vs. SCE), but it does not give a response in the potential range where Ag(0) is oxidized to Ag(I). Silver could be accumulated from 0.1 mol l–1 acetate buffer onto a 2-MI modified carbon paste electrode without a potential applied; after medium exchange, it was reduced at –1 V vs. SCE in 0.1 mol l–1 acetate buffer solution and determined by differential pulse anodic stripping voltammetry. With suitable preconcentration times, the detection limit was 0.1 g l–1; a linear relation between current and concentration was found to exist within a range of 0.5 to 1000 g l–1. In the presence of EDTA, common metal ions have no or only little effect on the voltammetric determination of silver.  相似文献   

5.
Dimenhydrinate exhibits a single adsorptive stripping peak at a hanging mercury drop electrode after accumulation at 0.0V vs Ag/AgCl electrode at pH 3.8 (acetate buffer). The addition of trace amounts of copper ions enhanced the dimenhydrinate peak and its height depends on the concentration of each dimenhydrinate and Cu2+. The adsorptive stripping response was evaluated with respect to accumulation time and potential, concentration dependence, electrolyte, the presence of other purines, surfactants and other metal ions, and some variables. The calibration graph for dimenhydrinate determination is linear over the range 2.0×10–8–2.0×10–7 M (pre-concentration for 60s). The correlation factor is found to be 0.985 and RSD is 3.2% at 1.0×10–7 M. Detection limit is 1.0×10–8 M after 5 min accumulation. The determination of dimenhydrinate in pharmaceutical formulations by the proposed method is also reported.  相似文献   

6.
A new chemically modified electrode (CME), -benzoinoxime (CUPRON) modified carbon paste electrode, for determining copper(II) is reported because of its excellent selectivity and sensitivity. The electrode is made by mixing a quantity of CUPRON (25%, w/w) with graphite powder (50%, w/w) and paraffin oil (25%, w/w). The CME preferentially deposits copper from the pH 8.5 NH3-NH4Cl buffer solution containing copper(II) under an open circuit and most of metal ions do not interfere with the measurements. The detection limit (S/N of three) for determining Cu(II) is 3 × 10–10 g/ml after 10 min accumulation in fast linear scan stripping voltammetric measurement. Linear calibration curves are obtained for Cu(II) concentration ranged from 1 × 10–8 M to 1 × 10–6 M. The response can be maintained with relative standard deviation of 6.0% in a 5 × 10–6 M Cu(II) solution after eight accumulation/measurement/ regeneration cycles at the same electrode surface. The effect resulted from carbon paste preparation, reduction potential, electrode renewal, electrolyte and solution pH, preconcentration time, concentration dependence, possible interference and other variables has been evaluated. As for application, the CME demonstrates its high sensitivity and copper-selectivity in complex composition samples, such as anodic mud and polluted water.  相似文献   

7.
Summary A new preconcentration and voltammetric determination method for cobalt(II) in aqueous solution with a chemically modified electrode is proposed. The accumulation behaviour and voltammetry of cobalt(II) has been investigated with a carbon paste electrode modified with cationexchanger and 1,10-phenanthroline. The electrochemical response is characterized with respect to carbon paste composition, pH, preconcentration time, cobalt(II) concentration and other variables. For a 3-min preconcentration time, the electrode gives good linearity for 1×10–7 to 4×10–6 mol/l Co(II), a detection limit of 8×10–8 mol/l. The response can be reproduced with a 4.0% relative standard deviation. The method is fairly free from many coexisting ions interferences. A rapid and convenient renewal procedure allows the use of a single electrode in multiple analytical determinations over several days. Satisfactory results are obtained for the determination of cobalt in a variety of certified standard reference materials.  相似文献   

8.
The clay mineral montmorillonite has been tested as modifier for the carbon paste electrode with a novel electrode modification technique. The differential pulse voltammetric determination of copper(II) by means of this modified carbon paste electrode has been studied. A detection limit of 4×10-8 mol/l has been achieved after 10 min preconcentration under open circuit conditions with subsequent anodic stripping voltammetry. The calibration curve for Cu(II) is linear in the range of 4×10-8–8×10-7 mol/l. Pb interferes in a 10-fold molar and Cd and Hg in a 100-fold molar excess. The interference by humic ligands is significant.  相似文献   

9.
An extremely sensitive stripping voltammetric procedure for low level measurements of platinum (II, IV) or ruthenium (III, IV) is reported. The method is based on the interfacial accumulation of the platinum (II) or ruthenium (III)-1-(2-pyridylazo)-2-naphthol complex on the surface of a hanging mercury drop electrode, followed by the reduction of the adsorbed complex during the cathodic scan. The peak potential was found to be –0.8 V vs. Ag/AgCl electrode and the reduction current of the adsorbed complex ions of platinum (II) or ruthenium (III) was measured by differential pulse cathodic stripping voltammetry. The optimum experimental conditions were: 1.5×10–7 mol/l of 1-(2-pyridylazo)-2-naphthol solution of pH 9.3, preconcentration potential of –0.2 V, accumulation time of 3 min and pulse amplitude of 50 mV with 4 mV s–1 scan rate in the presence of ethanol-water (30% v/v) — sodium sulphate (0.5 mol/l). Linear response up to 6.4 × 10–8 and 5.1 × 10–8 mol/l and a relative standard deviation (at 1.2×10–8 mol/l) of 2.4 and 1.6% (n=5) for platinum (II) and ruthenium (III) respectively were obtained. The detection limits of platinum and ruthenium were 3.2×10–10 and 4.1×10–10 mol/l, respectively. The electronic spectra of the Pt(II) — PAN and Ru(III) — PAN complexes were measured at pH 9.3 and the stoichiometric ratios of the complexes formed were obtained by the molar ratio method. The effects of some interfering ions on the proposed procedure were critically investigated. The method was found suitable for the sub-microdetermination of ruthenium (IV) and platinum (IV) after their reduction to ruthenium (III) and platinum (II) with sulphur dioxide in acid media. The applicability of the method for the analysis of binary mixtures of ruthenium (III) and (IV) or platinum (II) and (IV) has also been carried out successfully. The method is simple, rapid, precise, and promising for the determination of the tested metal ions at micro-molar concentration level.  相似文献   

10.
The oxidative behaviour of the antidiabetic agent glibenclamide on a bare carbon paste electrode (CPE) and a Sephadex-modified carbon paste electrode (SMCPE) was explored by cyclic and differential pulse voltammetry (DPV). The analysis procedure consisted of an open circuit accumulation step in stirred sample solution of Britton-Robinson buffer (0.04 mol L–1, pH 2.0). This was followed by medium exchange to a clean solution of Britton-Robinson buffer (0.04 mol L–1, pH 5.0), and subsequently an anodic potential scan was effected to obtain the voltammetric peak. The glibenclamide oxidation peak current obtained by DPV was proportional to the concentration of the glibenclamide in the range of 1.0×10–9 mol L–1 to 5.0×10–8 mol L–1 for 180 s accumulation time, with a detection limit of 4.0×10–10 mol L–1. A method was developed for the determination of glibenclamide in formulation and spiked human serum. Moreover, the proposed procedure was used to estimate the serum concentrations after oral administration of a 5 mg tablet of glibenclamide to three diabetic subjects.  相似文献   

11.
In the NH4Cl supporting electrolyte, within the pH range from 1 to 5, an irreversible adsorptive reducing wave of salicyl fluorone(SAF) was obtained. The electrode process was verified as follow: On the surface of mercury electrode, the adsorption of SAF obeys Frumkin isotherm.In 0.2 mol/l potassium hydrogen phthalate/HCl buffer solution, at pH 3.0, the sensitive adsorptive complex wave of Ga-SAF was obtained by linear sweep voltammetry. The composition of the electroactive complex was determined as Ga:SAF = 11. The peak height of the complex is proportional to the concentration of Ga(III) in the range of 1.5 × 10–9 to 6.0 × 10–7 mol/l, the detection limit is 1.0× 10–9 mol/l. The proposed method has been applied to the determination of gallium content in aluminium alloys.  相似文献   

12.
The electroanalytical determination of isoprenaline in pharmaceutical preparations of a homemade carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) was studied by cyclic voltammetry. Several parameters were studied for the optimization of the sensor such as electrode composition, electrolytic solution, pH effect, potential scan rate and interferences in potential. The optimum conditions were found in an electrode composition (in mass) of 15% CuHCF, 60% graphite and 25% mineral oil in 0.5 mol l−1 acetate buffer solution at pH 6.0. The analytical curve for isoprenaline was linear in the concentration range from 1.96×10−4 to 1.07×10−3 mol l−1 with a detection limit of 8.0×10−5 mol l−1. The relative standard deviation was 1.2% for 1.96×10−4 mol l−1 isoprenaline solution (n=5). The procedure was successfully applied to the determination of isoprenaline in pharmaceutical preparations; the CuHCF modified carbon paste electrode gave comparable results to those results obtained using a UV spectrophotometric method.  相似文献   

13.
Electrochemical detection of hydrogen peroxide using an edge-plane pyrolytic-graphite electrode (EPPG), a glassy carbon (GC) electrode, and a silver nanoparticle-modified GC electrode is reported. It is shown, in phosphate buffer (0.05 mol L–1, pH 7.4), that hydrogen peroxide cannot be detected directly on either the EPPG or GC electrodes. However, reduction can be facilitated by modification of the glassy-carbon surface with nanosized silver assemblies. The optimum conditions for modification of the GC electrode with silver nanoparticles were found to be deposition for 1 min at –0.5 V vs. Ag from 5 mmol L–1 AgNO3/0.1 mol L–1 TBAP/MeCN, followed by stripping for 2 min at +0.5 V vs. Ag in the same solution. A wave, due to the reduction of hydrogen peroxide on the silver nanoparticles is observed at –0.68 V vs. SCE. The limit of detection for this modified nanosilver electrode was 2.0×10–6 mol L–1 for hydrogen peroxide in phosphate buffer (0.05 mol L–1, pH 7.4) with a sensitivity which is five times higher than that observed at a silver macro-electrode. Also observed is a shoulder on the voltammetric wave corresponding to the reduction of oxygen, which is produced by silver-catalysed chemical decomposition of hydrogen peroxide to water and oxygen then oxygen reduction at the surface of the glassy-carbon electrode.  相似文献   

14.
Summary A chemiluminescent method for the determination of vanadium in steel with cinchomeronic hydrazide as analytical reagent is proposed. The optimum conditions are pH 11.75 (phosphate buffer), 1.0×10–3 mol/l cinchomeronic hydrazide, 6.6×10–3 mol/l hydrogen peroxide and 2.8×10–3 mol/l V(IV). The maximum chemiluminescent emission is obtained at 420 nm. A linear relationship exists in the range of 0.04–1.00 g/ml of V(IV) with a 3.6% variation coefficient at 0.50 g/ml of V(IV) level for ten replicates. Cobalt(II), copper(II) and chromium(VI) show strong interference and a chloroform extraction procedure with -benzo-inoxime is recommended to avoid these interferences. This method has been applied to determine vanadium in a certified steel with excellent results.Presented at Euroanalysis VII  相似文献   

15.
Summary A method is described for the determination of tetramethrin (neo-pynamin) by differential pulse voltammetry with a carbon paste electrode modified with 10% (w/w) sepiolite. Preconcentration was carried out under open circuit conditions in 0.01 mol/l acetic acid/potassium acetate medium at pH 5.3 over 10 min, recording the voltammogram in 0.01 mol/l of KH2PO4/K3PO4 at pH 12. This led to the appearance of a peak at –1.32 V against SCE at 40 mVs–1 and a pulse amplitude of 100 mV. Under these conditions determination limits of 45 ng ml–1 were achieved. The method was applied to the determination of tetramethrin in soil and water samples.
Bestimmung von Tetramethrin (Neo-Pynamin) durch Differential-Puls-Voltammetrie unter Verwendung einer mit Sepiolit modifizierten Kohlepaste-Elektrode
  相似文献   

16.
The preparation and electrochemical characterization of a carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) as well as its behavior as electrocatalyst toward the oxidation of N-acetylcysteine were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of N-acetylcysteine were explored using sweep linear voltammetry. The best voltammetric response was observed for a paste composition of 20% (w/w) copper(II) hexacyanoferrate(III) complex, acetate buffer solution at pH of 6.0 as the electrolyte and scan rate of 10 mV s− 1. A linear voltammetric response for N-acetylcysteine was obtained in the concentration range from 1.2 × 10− 4 to 8.3 × 10− 4 mol L− 1, with a detection limit of 6.3 × 10− 5 mol L− 1. The proposed electrode is useful for the quality control and routine analysis of N-acetylcysteine in pharmaceutical formulations.  相似文献   

17.
The oxidative behaviour of moxifloxacin was studied at a glassy carbon electrode in different buffer systems using cyclic, differential pulse, and Osteryoung square-wave voltammetry. The oxidation process was shown to be irreversible over the entire pH range studied (2.0–10.0) and was diffusion-controlled. The methods were performed in Britton–Robinson buffer and the corresponding calibration graphs were constructed and statistical data were evaluated. When the proposed methods were applied at pH 6.0 linearity was achieved from 4.4×10–7 to 1.0×10–5 mol L–1. Applicability to tablets and human plasma analysis was illustrated. Furthermore, a high-performance liquid chromatographic method with diode-array detection was developed. A calibration graph was established from 4.0×10–6 to 5.0×10–5 mol L–1 moxifloxacin. The described methods were successfully employed with high precision and accuracy for estimation of the total drug content of human plasma and for pharmaceutical dosage forms of moxifloxacin.  相似文献   

18.
A new highly selective thiocyanate electrode based on N,N-bis-(furaldehyde)-1,2-phenylenediamine-dipicolyl copper(II) complex [Cu(II)-BFPD] as neutral carrier is described. The electrode has an anti-Hofmeister selectivity sequence: SCN>I>Sal>ClO4 >Br>NO2 >Cl>NO3 >SO4 2–>SO3 2–>H2PO4 and a near-Nernstian potential linear range for thiocyanate from 1.0×10–1 to 5.0×10–6 mol L–1 with a detection limit 2.0×10–6 mol L–1 and a slope of 57.5 mV decade–1 in pH 5.0 of phosphate buffer solution at 20 °C. The response mechanism is discussed on the basis of results from A.C. impedance measurement and UV spectroscopy. The anti-Hofmeister behavior of the electrode results from a direct interaction between the central metal and the analyte ion and a steric effect associated with the structure of the carrier. The electrode has the advantages of simplicity, fast response, fair stability and reproducibility, and low detection limit. The selectivity of electrodes based on [Cu(II)-BFPD] exceeds that of classical anion-sensitive membrane electrodes based on ion exchangers such as lipophilic quaternary ammonium or phosphonium salts. Application of the electrode for determination of thiocyanate in waste water samples from a laboratory and a gas factory, and in human urine samples, is reported. The results obtained were fair agreement with the results obtained by HPLC.  相似文献   

19.
The coprecipitation of Fe(III) quinoline-8-thiolate (QT) with bis (8-quinolyl) disulphide has been investigated with 1 mol × dm–3 potassium tartrate and 0.001 mol × dm–3 aqueous tartaric acid solutions in dependence on their pH. In return QTs of Cu(II), Cd(II) and Hg(II) have been coprecipitated from 0.2, 0.1, 0.01 and 0.001 mol × dm–3 aqueous solutions of tartaric acid after adjusting the pH to 6–7. These tartaric acid concentrations relate to their initial concentrations before the coprecipitation. The presence of tartrate ions influences the recovery of the coprecipitated Fe(III), Cd(II) and Hg(II) QTs. A complete coprecipitation of the Cu(II) inner complex compound can be achieved from the aqueous solutions indicated.  相似文献   

20.
A differential pulse polarographic (DPP) method has been developed for the determination of acipimox in its pharmaceutical formulations. Using Sörensen buffer pH 6.0 as supporting electrolyte a single, irreversible peak occurred at –0.79 V vs an Ag/AgCl reference electrode. The peak height vs concentration plot was found to be linear over the range of 10–6 to 6 × 10–4 mol/l. The detection limit is 60ng/ml. The analysis of a series of 10 Olbetam® 250 mg capsules showed an overall standard deviation of ± 4.18 mg and a Srel of ± 1.66%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号