首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The variational method within the Hamiltonian formalism of quantum field theory has been used in order to investigate the effect of virtual pairs for four-body scalar systems consisting of two particles and two antiparticles of the same mass. The scalar particles and antiparticles interact via a massive or massless mediating scalar field. The ground state energy solutions of Fock-space variational trial states (\(|N{\bar {N}}N{\bar {N}}{ \rangle }+|N{\bar {N}}N{\bar {N}}N{\bar {N}\rangle }\)) of the relativistic wave equations have been studied. We have compared these results with the previous work of four-body system (variational trial states of the form \(|N{ \bar {N}}N{\bar {N}}{\rangle }\)) and we have shown that the inclusion of virtual pairs has a noticeable effect at low coupling and at high coupling the energy of the system is changed by an important amount. In other words, the calculations show that the inclusion of virtual pairs augments the binding energy of the four-body system by a substantial amount at strong coupling. This study can pave the way for some new ideas in order to investigate the effect of virtual pairs, for example, for a bound-states quark-antiquark or tetraquark systems in future.  相似文献   

2.
The geodesics of tunneling particles were derived unnaturally and awkwardly in previous works. For one thing, the previous derivation was inconsistent with the variational principle of action. Moreover, the definition of geodesic equations for massive particles was quite different from that of massless case. Even worse, the relativistic and nonrelativistic foundations were mixed with each other during the past derivation of geodesics. As a highlight, remedying the urgent shortcomings, we improve treatment to derive the geodesic equations of massive and massless particles in a unified and self-consistent way. Besides, we extend to investigate the Hawking radiation via tunneling from Reissner-Nordström black holes in the context of AdS spacetime. Of special interest, the trick of utilizing the first law of black hole thermodynamics manifestly simplifies the calculation of tunneling integration.  相似文献   

3.
The generalization of QCD motivated classical SU(2) Yang-Mills theory coupled to a scalar field is discussed. The massive scalar field, corresponding to the scalar glueball, provides a confining potential for static, point-like, external sources. In the case of a massless scalar field screening solutions are found. However, there is a confining sector as well. Both, massive and massless confining solutions, are compared with phenomenological potentials. The case of a non-dynam ical permittivity is also discussed. Received: 15 November 2002 / Revised version: 31 January 2003 / Published online: 7 March 2003 RID="a" ID="a" e-mail: mslus@phys.ualberta.ca RID="b" ID="b" e-mail: wereszcz@alphas.if.uj.edu.pl  相似文献   

4.
The models with a massless fermion and a self-interacting massive scalar field with the Yukawa interaction are discussed. The chiral condensate and the fermion mass are calculated analytically through a one-loop approximation in (1 + 1)-dimensions. It is shown that the models have a phase transition as a function of the squared mass of the scalar field.  相似文献   

5.
In many metrics of physical interest, the gravitational field can be represented as an optical medium with an effective index of refraction. We show that, in such a metric, the orbits of both massive and massless particles are governed by a variational principle which involves the index of refraction and which assumes the form of Fermat's principle or of Maupertuis's principle. From this variational principle we derive exact equations of motion of Newtonian form which govern both massless and massive particles. These equations of motion are applied to some problems of physical interest.  相似文献   

6.
A geometrical way is described to associate quantum states in the sense of geometric quantization to wave functions in the quantum mechanical sense for each relativistic elementary particle. Explicit computations are made in a number of cases: Klein-Gordon and Dirac equations, neutrino and antineutrino Weyl equations, and very general cases of massive and massless particles of arbitrary spin. In this later case one is led in a canonical way to Penrose wave equations.  相似文献   

7.
We consider a method for deriving relativistic two-body wave equations for fermions in the coordinate representation. The Lagrangian of the theory is reformulated by eliminating the mediating fields by means of covariant Green's functions. Then, the nonlocal interaction terms in the Lagrangian are reduced to local expressions which take into account retardation effects approximately. We construct the Hamiltonian and two-fermion states of the quantized theory, employing an unconventional “empty” vacuum state, and derive relativistic two-fermion wave equations. These equations are a generalization of the Breit equation for systems with scalar, pseudoscalar, vector, pseudovector and tensor coupling.  相似文献   

8.
We investigate the possibility of localizing various matter fields on a bent AdS4 (dS4) thick brane in AdS5. For spin 0 scalar field, we find a massless zero mode and an excited state which can be localized on the bent brane. For spin 1 vector field, there is only a massless zero mode on the bent brane. For spin 1/2 fermion field, it is shown that, in the case of no Yukawa coupling of scalar-fermion, there is no existence of localized massless zero mode for both left and right chiral fermions. In order to localize massless fermions, some kind of Yukawa coupling must be included. We study two types of Yukawa couplings as examples. Localization property of chiral fermions is related to the parameters of the brane model, the Yukawa coupling constant and the cosmological constant of the 4-dimensional space–time.  相似文献   

9.
This paper deals with the dynamics of scalar field thin shell in the Reissner-Nordstr?m geometry. The Israel junction conditions between Reissner-Nordstr?m spacetimes are derived, which lead to the equation of motion of scalar field shell and Klien–Gordon equation. These equations are solved numerically by taking scalar field model with the quadratic scalar potential. It is found that solution represents the expanding and collapsing scalar field shell. For the better understanding of this problem, we investigate the case of massless scalar field (by taking the scalar field potential zero). Also, we evaluate the scalar field potential when p is an explicit function of R. We conclude that both massless as well as massive scalar field shell can expand to infinity at constant rate or collapse to zero size forming a curvature singularity or bounce under suitable conditions.  相似文献   

10.
The exact static and spherically symmetric solution of Einstein's field equations for a massive point-particle with a scalar point-charge as source of a massless scalar field is derived in Schwarzschild coordinates. There exists no longer a Schwarzschild horizon. Only at the point-particle metric and scalar field are singular (naked singularity).  相似文献   

11.
Both particle physics and the 1890s Seeliger–Neumann modification of Newtonian gravity suggest considering a “mass term” for gravity, yielding a finite range due to an exponentially decaying Yukawa potential. Unlike Nordström’s “massless” theory, massive scalar gravities are strictly Special Relativistic, being invariant under the Poincaré group but not the conformal group. Geometry is a poor guide to understanding massive scalar gravities: matter sees a conformally flat metric, but gravity also sees the rest of the flat metric, barely, in the mass term. Infinitely many theories exhibit this bimetric ‘geometry,’ all with the total stress–energy’s trace as source. All are new except the Freund–Nambu theory. The smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities. The ease of accommodating electrons, protons and other fermions using density-weighted Ogievetsky–Polubarinov spinors in scalar gravity is noted.  相似文献   

12.
We consider the massless tricritical Ising model perturbed by the thermal operator 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massless thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime IV. The resulting TBA equations describe the massless renormalization group flow from the tricritical to critical Ising model. As in the massive case of Part I, the excitations are completely classified in terms of (m,n) systems but the string content changes by one of three mechanisms along the flow. Using generalized q-Vandermonde identities, we show that this leads to a flow from tricritical to critical Ising characters. The excited TBA equations are solved numerically to follow the continuous flows from the UV to the IR conformal fixed points.  相似文献   

13.
We study massless and massive Hawking radiations on a two-dimensional AdS spacetime. For the massless case, the quantum stress-energy tensor of a massless scalar field on the AdS background is calculated, and the expected null radiation is obtained. However, for the massive case, the scattering analysis is performed in order to calculate the absorption and reflection coefficients which are related to statistical Hawking temperature. On the contrary to the massless case, we obtain a nonvanishing massive radiation.  相似文献   

14.
The causal Green function or Feynman propagator for the free-field Klein-Gordon equation and related singular functions, defined as distributions, are related to the causal time-boundary data. Probability densities and amplitudes are defined in terms of the solutions of the Klein-Gordon equation for a complex scalar field interacting with an electromagnetic field. The convergence of the perturbation expansion of the solution of the Klein-Gordon equation for a charged scalar particle in an external field is shown for well-behaved electromagnetic potentials. Other relativistic wave equations are discussed briefly.  相似文献   

15.
A Bianchi I model of the Universe filled with interacting nonlinear spinor and scalar fields is studied within quantum geometrodynamics. Three types of interaction are considered: gradient, Yukawa, and axion ones. For massless fermion fields, the variables in the Wheeler – de Witt equation will separate. The solution can be interpreted using a two-component perfect liquid. One component corresponds to a massless scalar field, while the other – to a nonlinear spinor field. The interaction between the spinor and scalar fields can lead to elimination of singularity of the wave function. There is a possibility of existence of a discrete spectrum of the quantum Universe, as well as tunneling from the region with a rigorous equation of state to the region of the de Sitter vacuum.  相似文献   

16.
S N Biswas  Ashok Goyal 《Pramana》1985,24(1-2):47-51
A modification of the Wick-Cutkosky equation for the relativistic bound state of two scalar particles interacting through the exchange of a massless scalar field within the ladder approximation has been considered by incorporating the self-energy diagrams in the integral kernel. An exact analytical solution of the equation is obtained at vanishing total energy and it is shown that the self-energy effects generally diminish the eigenvalues in agreement with the findings of Liet al, who, however solved the equation numerically for the case of massive scalar exchange. An additional feature of the modified equation is that it preserves the 0(5) symmetry at zero total energy as was first noted by Cutkosky for the scalar bound state equation without self-energy effects.  相似文献   

17.
We give a class of exact solutions of quartic scalar field theories. These solutions prove to be interesting as are characterized by the production of mass contributions arising from the nonlinear terms while maintaining a wave-like behavior. So, a quartic massless equation has a nonlinear wave solution with a dispersion relation of a massive wave and a quartic scalar theory gets its mass term renormalized in the dispersion relation through a term depending on the coupling and an integration constant. When spontaneous breaking of symmetry is considered, such wave-like solutions show how a mass term with the wrong sign and the nonlinearity give rise to a proper dispersion relation. These latter solutions do not change the sign maintaining the property of the selected value of the equilibrium state. Then, we use these solutions to obtain a quantum field theory for the case of a quartic massless field. We get the propagator from a first-order correction showing that is consistent in the limit of a very large coupling. The spectrum of a massless quartic scalar field theory is then provided. From this we can conclude that, for an infinite countable number of exact classical solutions, there exist an infinite number of equivalent quantum field theories that are trivial in the limit of the coupling going to infinity.  相似文献   

18.
以 3模型和Yukawa模型为例,利用泛函微分方法,将多体关联格林函数动力学推广到相对论情形,建立起了相对论性多体关联格林函数动力学的理论形式.  相似文献   

19.
《Nuclear Physics B》1988,303(4):728-750
We identify the quantum theory of cosmological perturbations with the quantum field theory in curved spacetime with emphasis on its field concept. We materialize this idea by using a coherent state as a quantum analogue of a nontrivial classical field configuration. We present analytic results in a de Sitter universe for the massless and massive minimal free scalar fields. Some new features on the spectrum of perturbations are obtained for the massive case. We also show how such quantum field theories can be derived from quantum gravity using the semiclassical approximation. A physical degree of freedom is picked up from three scalar perturbations in the quantum gravity scalar system and its Schrödinger equation is derived. Peculiar features of quantum fields at imaginary time and its possible implications on boundary conditions for the wave function of the universe are also discussed.  相似文献   

20.
The two-time Green functions and corresponding quasipotentials for the system of two relativistic particles with spins 0 and 1/2, interacting through exchange of a massless vector boson and a massive scalar boson, are calculated. The calculations are performed using the covariant single-time method of Logunov and Tavkhelidze in the second order of perturbation theory. The dependence of these quantities on the total energy of the system is given. It is shown that, despite a nonlocal form of the quasipotentials, the three-dimensional equations for the wavefunctions can be reduced to the one-dimensional equations using the partial wave decomposition.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 57–61, February, 1989.In conclusion, the authors express their gratitude to A. A. Afonin, E. A. Dei, V. I. Savrin, and N. B. Skachkov for helpful discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号