首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different grades of linear low density polyethylenes (LLDPEs) have been quenched cooled step-wise and crystallised isothermally at (a series of increasing) temperatures in a DSC (thermal fractionated samples). These samples have been investigated by temperature modulated DSC (MDSC). The heat flow curves of the thermal fractionated materials were compared with those obtained from samples crystallised at a relatively slow cooling rate of 2 K min-1(standard samples). The melting enthalpy obtained from the total heat flow of the thermal fractionated samples was 0-10 J g-1higher than those of standard samples. The melting enthalpy obtained from the reversing heat flows was 13-31 J g-1lower in the thermal fractionated samples than in the standard samples. The ratio of the reversing melting enthalpy to the total melting enthalpy increased with decreasing density of the PE. The melting temperature of the endotherms formed by the step-wise cooling was 9 K higher than the crystallisation temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Blending of ethylene/1‐octene copolymers can be used to achieve a well‐controlled broad chemical composition distribution (CCD) required in several polyolefin applications. The CCD of copolymer blends can be estimated using crystallization analysis fractionation (CRYSTAF) or crystallization elution fractionation (CEF). Unfortunately, both techniques may be affected by the cocrystallization of chains with different compositions, leading to profiles that do not truly reflect the actual CCD of the polymer. Therefore, understanding how the polymer microstructure and the analytical conditions influence copolymer cocrystallization is critical for the proper interpretation of CRYSTAF and CEF curves. In this investigation, we studied the effect of chain crystallizabilities, blend compositions, and cooling rates on cocrystallization during CEF and CRYSTAF analysis. Cocrystallization is more prevalent when the copolymer blend has components with similar crystallizabilities, one of the components is present in much higher amount, and fast cooling rates are used. CEF was found to provide better CCD estimates than CRYSTAF in a much shorter analysis time. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

3.
The cold crystallization and melting of poly(ethylene therephthalate) (PET), poly(ethylene 2,6-naphthalene dicarboxylate) (PEN) and their blends were studied using temperature modulated differential scanning calorimetry (TMDSC) at underlying heating rates of between 1 and 3 K min-1 and periods ranging from 30 to 90 s. The amplitude of modulation was selected in order to give an instantaneous heating rate β≥0. Heat flow is analyzed by the total heat flow signal o, which is equivalent to the conventional DSC signal, and the reversing heat flow oREV, which only detects the glass transition and the melting processes. The dependence of the melting region in the reversing heat flow on the frequency of modulation is analyzed. The use of the so-called non-reversing heat flow oNREV (=o-oREV)) and the effect of frequency and amplitude on the complex heat capacity are also studied. The results show the complexity of these magnitudes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Annealing experiments have been carried out just below the melting temperature of both polyethylene (LLDPE) and polypropylene (PP) and their blends. The total melting enthalpy measured after the annealing cycle was greater by 10-15% with respect to the value having been measured before it. During the annealing period the heat capacity decreases to a lower value within the first 2-3 min. Heat capacities of PP (either in pure form or in the blends) measured during the heating cycle following the annealing cycle have the same value as during the cooling section. The heat capacities of the LLDPE in the heating cycle following the annealing were those of the preceding heating cycle. The total heat flows in the cooling section following the annealing cycle were greater than those in another cooling cycle at the same temperatures indicating that the crystallisation takes place during the cooling rather than during the annealing periods. The presence of LLDPE decreases the crystallisation temperature of PP. The presence of SEBS in the blend results in a greater crystallisation temperature than that of pure PP. The crystallisation temperature of LLDPE increases with increasing levels of PP. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Summary A two-step isothermal annealing (TSIA) procedure is described that enables the endothermic peaks of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE) and their blends, to be satisfactorily resolved during analysis by differential scanning calorimetry. A modified form of multistep isothermal annealing, the TSIA procedure produces a highly characteristic profile of the blend components by facilitating the segregation of the phases based on branch density. It is proposed that the TSIA procedure may have significant merit in the identification and quantification of the components in an unknown blend as well as increasing the sensitivity in analytical procedures aimed at blend component quantification.  相似文献   

6.
In this study, the specimens of low‐density polyethylene (LDPE) and blend polymers of LDPE and a random copolymer of ethylene and propylene were prepared by the blowing process and T‐die method. The differences in electrical breakdown properties and morphology between the specimens made by the two different methods were studied. It was found that the specimen made by the T‐die method had a higher electrical breakdown strength than the specimen made by the blowing process, except for the DC breakdown strength in some cases at 30 °C. The morphology of the specimens was investigated by means of the measurements of thermal shrinkage, infrared dichroism, and X‐ray diffraction. The specimen made by the T‐die method has a stronger orientation in both the crystalline and amorphous phases than the specimen made by the blowing process. The difference in morphology is supposed to be correlated with the difference in electrical breakdown properties between the specimens made by the two different methods. It was concluded that the electrical breakdown properties are strongly affected by the orientation of chains in the specimen. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1741–1748, 2001  相似文献   

7.
In this paper the high-temperature thermal field flow fractionation method is exploited for the analysis of polyethylene (PE). The experimental apparatus set-up, obtained by simply modifying a commercial instrument, is presented. The numerical procedure for deriving retention calibration plot versus molecular weight is discussed with reference to the specific polymer-solvent pair, PE-o-dichlorobenzene (ODCB), here employed. Different methods for computing the physicochemical data set of the solvent, necessary for calibration, are compared. The selectivity of the checked PE-ODCB system proves comparable with respect to the values currently found in thermal field-flow fractionation (ThFFF) analysis. Differences are found between PE and polystyrene (PS) analysis in the same solvent. The conditions for high temperature ThFFF operation in PE analysis and their advantages are discussed with respect to the standard SEC technique for PE, PS, and PE-PS copolymer analysis. Molecular weight distributions obtained by ThFFF of two PE commercial samples agree with those obtained by SEC. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
A series of poly(ethylene‐co‐1‐hexene) samples made with rac‐ethylene bis(indenyl)zirconium dichloride/methylaluminoxane were analyzed by crystallization analysis fractionation (CRYSTAF). The nine samples had comonomer contents of 0–4.2 mol % 1‐hexene with a narrow range of molecular weights (34,000–39,000 g/mol). Because all the copolymer samples had narrow, unimodal chemical composition distributions, they were ideal as calibration standards for CRYSTAF. A linear calibration curve was constructed relating the peak crystallization temperature from CRYSTAF operated at a cooling rate of 0.1 °C/min and the comonomer content as determined by 13C NMR. Reactivity ratios for ethylene and 1‐hexene were estimated by the fitting of reactant liquid‐phase compositional data to the Mayo–Lewis equation. It was found that a value of the 1‐hexene reactivity ratio could not be unequivocally determined from the set of samples analyzed because the range of comonomer incorporation was too narrow. Stockmayer's bivariate distribution was used to model the fractionation process in CRYSTAF, and although a good fit to experimental CRYSTAF profiles was attained, the model did not fully describe the underlying crystallization phenomena. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2595–2611, 2002  相似文献   

9.
Crystallization analysis fractionation (CRYSTAF) is an analytical technique for determining the distribution of chain crystallizabilities of semicrystalline polymers. After only approximately a decade since it was developed, CRYSTAF has become one of the most important characterization techniques in polyolefin characterization laboratories because it provides fast and crucial information required for the proper understanding of polymerization mechanisms and structure–property relationships. In the polyolefin industry, it has been established as an indispensable tool for product development and product quality monitoring. This highlight article covers basic operation procedures, applications, and theoretical aspects of polymer fractionation with CRYSTAF. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1557–1570, 2005  相似文献   

10.
Metallocene catalyst technology was utilized to prepare functionalized polyethylenes, which were used as compatibilizers in polyethylene/polyamide 6 (40/60) blends. Polymerization of ethylene with 10-undecen-1-ol, 10-undecenoic acid, or N-methyl-10-undecenylamine resulted in ethylene copolymers with a small amount (0.2–1.2 mol %) of functionalized side chains. The blends were prepared in a twin-screw midiextruder, and injection molded with a mini-injection molding machine. The effect of the new compatibilizers on morphology and mechanical and thermal properties was studied. Toughness as well as stiffness and strength increased significantly with an addition of 10 wt % compatibilizer. Morphology became much more uniform, and crystallization and melting behavior changed. The Molau test with FTIR analysis was used to determine that the desired reactions between the compatibilizer and polyamide had actually taken place. The results showed functionalized polyethylenes prepared with metallocene catalysts to act as effective compatibilizers in polyethylene/polyamide 6 blends. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3099–3108, 1999  相似文献   

11.
Crystallization analysis fractionation and temperature rising elution fractionation are two techniques used to estimate the chemical composition distributions of semicrystalline copolymers. This study investigates the cooling rate and cocrystallization effects for both techniques with a series of ethylene/1‐olefin copolymers and their blends. Ideally, both techniques should operate in the vicinity of thermodynamic equilibrium so that crystallization kinetic effects are avoided. The results show that, in fact, crystallization kinetic effects play an important role at the typical cooling rate used with both techniques. Cocrystallization is significant when fast cooling rates are used. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1762–1778, 2003  相似文献   

12.
To treat data from temperature modulated differential scanning calorimetry (TMDSC) in terms of complex or reversing heat capacity firstly one should pay attention that the response is linear and stationary because this is a prerequisite for data evaluation. The reason for non-linear and non-stationary thermal response is discussed and its influence on complex (reversing) heat capacity determination is shown. The criterion for linear and stationary response is proposed. This allows to choose correct experimental conditions for any complex heat capacity measurement. In the case when these conditions can not be fulfilled because of experimental restrictions one can estimate the influence of non-linearity and non-stationarity on measured value of complex or reversing heat capacity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
To treat data from temperature modulated differential scanning calorimetry (TMDSC) in terms of complex or reversing heat capacity one should know heat transfer and apparatus influences on experimental results. On the other hand one should pay attention that the response is linear because this is a prerequisite for data evaluation. The reason for non-linear thermal response is discussed and its influence on complex heat capacity determination is shown. The criterion for linear response is proposed. This allows to choose correct experimental conditions for any complex heat capacity measurements. In the case when these conditions cannot be fulfilled because of experimental restrictions one can estimate the influence of non-linear response on measured value of complex or reversing heat capacity.  相似文献   

14.
Based on previous work a number of optimum extruded blends with high contents of a high barrier ethylene-vinyl alcohol copolymer were selected and characterized in terms of phase morphology, water sorption and barrier properties. Blend components were an ethylene vinyl-alcohol copolymer (EVOH with 32 mol% ethylene), an amorphous polyamide (aPA) and a nylon-containing ionomer. A fine two phase structure was found for these blends in all cases. However, Raman spectroscopy results indicated a poor interface interaction between the blend components in the case of the EVOH/aPA blends. Higher interface interaction had been previously found in the dry EVOH/ionomer blends. Equilibrium moisture solubility and diffusion were found to be higher than expected from simple additivity. However, the oxygen transmission rate was found to be clearly lower than expected from the rule of mixtures, particularly under dry conditions, fitting closely a simple Maxwell model.  相似文献   

15.
Recent experimental evidence and theoretical predictions indicate that binary blends of relatively monodisperse diblock copolymers remain miscible if the molecular weight disparity of the constituent copolymers is not too great. In this work, we examine the effect of moderate copolymer polydispersity on both the microstructural characteristics and phase behavior of blends prepared from four compositionally symmetric poly(styrene-b-isoprene) (SI) diblock copolymers ranging in polydispersity (w/n) from 1.02 to 1.30. Blend periodicities, measured by small-angle X-ray scattering, compare favorably with predictions from a strong segregation theory proposed for lamellar diblock copolymer blends composed of monomolecular copolymers. Transmission electron microscopy, employed to ascertain the real-space morphological characteristics of these blends, reveals that a lamellar → cylindrical transition occurs in macrophase-separated blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2653–2658, 1997  相似文献   

16.
The multimodal differential scanning calorimetry melting endotherms observed for commercial linear low‐density polyethylenes are due to broad and multimodal short‐chain‐branching distributions. Multiple peaks, observed in melting endotherms of isothermally melt‐crystallized and compositionally homogeneous polyethylene copolymers are due to intrachain heterogeneity. This intrachain heterogeneity is quantified by the distribution of ethylene sequence lengths within the chains. These compositionally homogeneous copolymers undergo a primary crystallization, which produces a population of thicker lamellae, creating a network that places severe restrictions on segment transport in subsequent secondary crystallization, which produces a population of thinner crystals. The restrictions on segment transport imposed by the initial network created by the primary crystallization of thicker lamellae severely limits the total crystallinity achieved in the random copolymers studied. The solution crystallization of such copolymers produces a continuous distribution due to more facile segment transport in a dilute solution, in contradistinction to the multimodal distribution produced in the melt crystallization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2800–2818, 2001  相似文献   

17.
Four polyethylene samples (PE) with different molecular weight distributions (MWD) were analyzed by crystallization analysis fractionation (Crystaf) at several cooling rates to investigate the effect of MWD and cooling rate on their Crystaf profiles. Using these results, we developed a mathematical model for Crystaf that considers crystallization kinetic effects, which are ignored in all previous Crystaf models. The Crystaf model we proposed can fit the experimental Crystaf profiles of the 4 polyethylene resins very well. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2749–2759, 2006  相似文献   

18.
Crystallization analysis fractionation (Crystaf) is a polymer characterization technique for estimating the chemical composition distributions of semicrystalline copolymers. Although Crystaf has been widely used during the recent years, it is still a relatively new polymer characterization technique. More quantitative understanding of its fractionation mechanism is essential for further developments. In this work, three ethylene/1‐hexene copolymers with different 1‐hexene fractions, but similar number‐average molecular weights, were analyzed by Crystaf at several cooling rates. A mathematical model was proposed to describe the effect of comonomer fraction and cooling rate on Crystaf fractionation from a fundamental point of view. The model describes the experimental Crystaf profiles of ethylene/1‐hexene copolymers with different 1‐hexene fractions measured at distinct cooling rates very well. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1010–1017, 2007  相似文献   

19.
The heat capacity of a linear polyethylene with dimethyl branches, at every 21st backbone atom was analyzed by differential scanning calorimetry (DSC) and quasi-isothermal temperature-modulated DSC. This novel copolyethylene (PE2M) is relatively difficult to crystallize from the melt. On subsequent heating, a first, sharp melting peak is followed by a sharp cold-crystallization and crystal perfection and a smaller endotherm, before reaching the main melting at 315–320 K, close to the melting temperatures of eicosane and tetracontane. The low-temperature melting is sensitive to the cooling rate and disappears below 1.0 K min−1. The cold crystallization can be avoided by heating with rates faster than 80 K min−1. The PE2M exhibits some reversing and reversible melting, which is typical for chain-folded polymers. The glass transition of semicrystalline PE2M is broadened and reaches its upper limit at about 260 K (midpoint at about 0.355 K). Above this temperature, the crystals seem to have a heat capacity similar to that of the liquid. A hypothesis is that the melting transition can be explained by changes in crystal perfection without major alteration of the crystal structure and the lamellar morphology. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3461–3474, 2006  相似文献   

20.
Poly(ethylene oxide) and poly[bis[2-(2′-methoxyethoxy) ethoxy] phosphazene], PEO/MEEP, polymer blends were investigated by thermal analysis, X-ray diffraction, and atomic force microscopy. MEEP is an amorphous polymer and its semicrystalline blends with PEO showed two distinct glass transitions, whose composition dependence was analysed by the Lodge and McLeish self-concentration model. It appears that an amorphous miscible phase is present in these blends. Excess melting enthalpy was observed for blends with high MEEP concentration. PEO lamellar characteristics exhibited changes as a function of MEEP content, both in X-ray patterns and AFM images that indicated the intercalation of MEEP side chains in the lamellar crystalline structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号