首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the initial biochemical or metabolic state of a cell membrane target pathway on its sensitivity to exogenous electromagnetic (EMF) fields is considered. It is shown that the resting or initial transmembrane voltage can affect the frequency response of the membrane pathway and substantially alter the signal to thermal noise threshold (SNR) of the target. EMF sensitivity is examined using a model which describes the response to applied fields of both single cells and cells in gap junction contact via a distributed parameter electrical circuit analog, wherein a voltage-dependent membrane impedance, relating to the initial biochemical state of the target cell(s), is considered. Application of the Hodgkin-Huxley K(+)-conduction pathway membrane to this model results, at a given transmembrane voltage, in a preferential array response to applied field frequencies in the 1-100 Hz range, centered at approximately 16 Hz for 1-10 mm array lengths. Extension of the model to consider the voltage dependence of the Hodgkin-Huxley K+ pathway results in a significant modulation of array frequency response with changing membrane resting potential. The result is EMF sensitivity (SNR) depends upon the initial state of the target tissue, providing a possible explanation of why, e.g., repairing, rather than resting, bone exhibits a physiologically relevant response to certain weak EMF signals.  相似文献   

2.
The effects of low electromagnetic field (EMF) exposure (4.5-15.8 microT, 50 Hz AC) on neurite outgrowth and cell division in rat PC12 pheochromocytoma cells were examined. The study involved two separate experimental series in which culture conditions during exposure to the magnetic fields differed. In series 1 (14 experiments in which culture conditions were not strongly conducive to cell differentiation [15% serum]), exposure to 4.5-8.25 microT for 23 h significantly inhibited neurite outgrowth by 21.5 +/- 1.3% (by Manova, p = 0.003). In contrast, in series 2 (12 experiments in which culture conditions promoted cellular differentiation [4% serum]), exposure to 4.35-8.25 microT for 23 h significantly stimulated neurite outgrowth by 16.9 +/- 1.1% (by Manova, p = 0.009). Thus, in both series, exposure to a narrow range of low EMF has significant, but opposite effects on neurite outgrowth. Exposure to higher fields, 8.25-12.5 microT (series 1) and 8.25-15.8 microT (series 2) had no significant effect on neurite outgrowth. These data, when considered with other reports, suggest that neuronal differentiation can be altered by low level EMF exposure. While this may not be detrimental, it merits further research. At present, the reasons for the significant changes in neurite outgrowth being confined to the same narrow field strength are unclear. As stated above, culture conditions in series 2 were more conducive to cell differentiation than those in series 1. This is reflected in the lower number of cells in control samples in series 2, at the end of the 23-h incubation, than in series 1 (- 16.9 +/- 1.7%, p = 0.003). As the same numbers were plated in both series, the medium used in series 1 allows more of the PC12 cells to divide; this is consistent with some cells reverting to a non-neuronal adrenal chromaffin phenotype [L. Greene, A. Tischler. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U. S. A., 73 (1976) 2424-2426]. Exposure to both ranges of magnetic fields (4.35-8.25 and 8.25-15.8 microT) has no effect on cell division. Thus, there is no evidence in this study that there is a mitogenic effect arising from low EMF exposure.  相似文献   

3.
A new method to follow in-situ grafting kinetics of diazonium compounds based on imposing small amplitude high frequency AC oscillations at grafting potential, is outlined. This enables the time-resolved measurements of capacitive impedance concomitantly with the growth of the organic layer at the working electrode. The impedance values were quantitatively correlated with the ex-situ (from voltammograms) and in-situ (from quartz crystal microbalance) measured surface coverages, providing a validation of the new methodology. The versatility of the developed approach was demonstrated on the grafting via reduction of 4-nitrobenzenediazonium on Au and glassy carbon (GC) substrates and via deposition of in-situ generated diazonium salts from 1-aminoanthraquinone and 4-ferrocenylaniline on GC. The capacitive impedance measurements are simple, fast, and non-destructive, making it an appealing methodology for an exploration of grafting kinetics of a wide range of diazonium salts.  相似文献   

4.
Rat pheochromocytoma (PC12) cells have been used to investigate neurite outgrowth. Nerve growth factor (NGF) has been well known to induce neurite outgrowth from PC12 cells. RhoA belongs to Ras-related small GTP-binding proteins, which regulate a variety of cellular processes, including cell morphology alteration, actin dynamics, and cell migration. NGF suppressed GTP-RhoA levels after 12 h in PC12 cells and was consistently required for a long time to induce neurite outgrowth. Constitutively active (CA)-RhoA suppressed neurite outgrowth from PC12 cells in response to NGF, whereas dominant-negative (DN)-RhoA stimulated it, suggesting that RhoA inactivation is essential for neurite outgrowth. Here, we investigated the mechanism of RhoA inactivation. DN-p190RhoGAP abrogated neurite outgrowth, whereas wild-type (WT)-p190RhoGAP and WT-Src synergistically stimulated it along with accelerating RhoA inactivation, suggesting that p190RhoGAP, which can be activated by Src, is a major component in inhibiting RhoA in response to NGF in PC12 cells. Contrary to RhoA, Rap1 was activated by NGF, and DN-Rap1 suppressed neurite outgrowth, suggesting that Rap1 is also essential for neurite outgrowth. RhoA was co-immunoprecipitated with Rap1, suggesting that Rap1 interacts with RhoA. Furthermore, a DN-Rap-dependent RhoGAP (ARAP3) prevented RhoA inactivation, abolishing neurite formation from PC12 cells in response to NGF. These results suggest that NGF activates Rap1, which, in turn, up-regulates ARAP3 leading to RhoA inactivation and neurite outgrowth from PC12 cells. Taken together, p190RhoGAP and ARAP3 seem to be two main factors inhibiting RhoA activity during neurite outgrowth in PC12 cells in response to NGF.  相似文献   

5.
The effect of neurite outgrowth of PC12 cells on collagen-coated glass plates under intermittent light irradiation at 525 nm and 0.4 mW/cm2 of intensity was investigated. Neurite outgrowth of PC12 cells was significantly suppressed when PC12 cells were cultivated under intermittent light irradiation with a total irradiation time of more than 2 min/h. No temperature increase was observed in the culture medium under either continuous or intermittent light irradiation. Therefore, suppression of neurite outgrowth under light irradiation was not due to the increase of temperature in the culture medium, but rather the effect of light on the PC12 cells, especially the signal transmittance of light to PC12 cells. The light irradiation interval also affected the neurite outgrowth of PC12 cells when the total irradiation time was constant. A high extension ratio of neurite outgrowth was observed under a long time interval of nonirradiation between light irradiations (1 min of irradiation every hour) as compared with frequent light irradiation intervals (5 s of irradiation every 5 min) with the same total irradiation period per hour. The neurite outgrowth ratio was thought to be dependent on the light intensity, the total time of light irradiation in the intermittent light irradiation, and the interval of light irradiation in the intermittent light irradiation.  相似文献   

6.
We report a general strategy to develop injectable welded nanofibers to facilitate the outgrowth and extension of neurites. In this case, nonwoven mats of uniaxially aligned poly(caprolactone)(PCL) nanofibers were firstly cut into several small pieces with fixed fiber lengths of 25, 50 and 100 μm, respectively, using a cryotome. A tissuelyser was employed to homogenize and disperse the short nanofibers to a homogeneous suspension. By tuning treatment duration from 100 s to 400 s, the temperature of the suspension was brought close to the melting point of PCL. As such, the short nanofibers were welded at their cross points while the fibers far away from the cross points remain the original structures. We showed that the viability of neuroblastoma SH-SY5Y cells and their neurite outgrowth and extension were enhanced with the use of such welded short nanofibers. Taken together, this study provides a simple way to generate injectable welded nanofibers, holding potential in affecting neurite outgrowth and extension for nerve repair, in particular, in the central nervous system.  相似文献   

7.
The electric field dependence of the mobilities of gas-phase protonated monomers [(MH+(H2O)n] and proton-bound dimers [M2H+(H2O)n] of organophosphorus compounds was determined at E/N values between 0 and 140 Td at ambient pressure in air with moisture between 0.1 and 15 000 ppm. Field dependence was described as alpha (E/N) and was obtained from the measurements of compensation voltage versus field amplitude in a planar high-field asymmetric waveform ion mobility spectrometer. The alpha function for protonated monomers to 140 Td was constant from 0.1 to 10 ppm moisture in air with onset of effect at approximately 50 ppm. The value of alpha increased 2-fold from 100 to 1000 ppm at all E/N values. At moisture values between 1000 and 10 000 ppm, a 2-fold or more increase in alpha (E/N) was observed. In a model proposed here, field dependence for mobility through changes in collision cross sections is governed by the degree of solvation of the protonated molecule by neutral molecules. The process of ion declustering at high E/N values was consistent with the kinetics of ion-neutral collisional periods, and the duty cycle of the waveform applied to the drift tube. Water was the principal neutral above 50 ppm moisture in air, and nitrogen was proposed as the principal neutral below 50 ppm.  相似文献   

8.
The gastrointestinal functions of secretin have been fairly well established. However, its function and mode of action within the nervous system remain largely unclear. To gain insight into this area, we have attempted to determine the effects of secretin on neuronal differentiation. Here, we report that secretin induces the generation of neurite outgrowth in pheochromocytoma PC12 cells. The expressions of Tau and beta-tubulin, neuronal differentiation markers, are increased upon secretin stimulation. In addition, secretin induces sustained mitogen-activated protein kinase (MAPK) activation and also stimulates the cAMP secretion. Moreover, the neurite outgrowth elicited by secretin is suppressed to a marked degree in the presence of either PD98059, a specific MAPK/ERK kinase (MEK) inhibitor, or H89, a specific protein kinase A (PKA) inhibitor. Taken together, these observations demonstrate that secretin induces neurite outgrowth of PC12 cells through cAMP- MAPK pathway, and provide a novel insight into the manner in which secretin participates in neuritogenesis.  相似文献   

9.
Sigma-1 (σ-1) receptor agonists are considered as potential treatment for stroke. TS-157 is an alkoxyisoxazole-based σ-1 receptor agonist previously discovered in our group. The present study describes TS-157 profile in a battery of tests for cerebral ischemia. Initial evaluation demonstrated the compound’s safety profile and blood–brain barrier permeability, as well as its ability to induce neurite outgrowth in vitro. The neurite outgrowth was shown to be mediated via σ-1 receptor agonism and involves upregulation of ERK phosphorylation (pERK). In particular, TS-157 also significantly accelerated the recovery of motor function in rats with transient middle cerebral artery occlusion (tMCAO). Overall, the results herein support the notion that σ-1 receptor agonists are potential therapeutics for stroke and further animal efficacy studies are warranted.  相似文献   

10.
Wang Y  Liu B 《The Analyst》2008,133(11):1593-1598
A simple and sensitive method for ATP detection using a label-free DNA aptamer as the recognition element and ethidium bromide (EB) as the signal reporter is reported. The ATP-binding aptamer undergoes a conformational switch from the aptamer duplex to the aptamer/target complex upon target binding, which induces the fluorescence change of intercalated EB emission. Good selectivity between ATP and CTP, GTP or UTP has been demonstrated, which is due to the specific recognition between the ATP aptamer and ATP. Using EB alone as a signal reporter, the ATP detection limit was estimated to be approximately 0.2 mM. When a light harvesting cationic tetrahedralfluorene was used as an energy donor to sensitize the intercalated EB emission, a 10-fold increase in detection limit and a 2-fold increase in detection selectivity was demonstrated. The sensitivity and selectivity of the tetrahedralfluorene sensitized assay is comparable to or better than most fluorescent ATP assays with multiple labels.  相似文献   

11.
Linear voltammetry and electrochemical impedance spectroscopy experiments were performed in order to obtain basic information about the electrochemical behavior of the primary cell of electrolytic conductivity at Centro Nacional de Metrología. Linear voltammetry shows that the amplitude of the sinusoidal perturbation must be smaller than 300 mV. Electrochemical impedance results indicate that optimal frequency interval extends from 5 to 0.6 kHz. Regarding sinusoidal signal amplitude, a lower bias with respect to electrolytic conductivity of an independent reference solution is obtained at 10 mV than at larger amplitudes; in addition, electrode integrity is improved.  相似文献   

12.
《Analytical letters》2012,45(10):1663-1675
Abstract

Solid-phase displacement assays allow extremely fast analyses when performed under continuous flow conditions. Continuous dissociation of labeled antigen from the immobilized saturated antibodies occurs even in the absence of competing unlabeled antigen. This spontaneous dissociation creates more unoccupied antibody binding sites which affect the magnitude of the signal generated. In order to evaluate the impact of this phenomenon in more detail, we extended the law of mass action to solid-phase binding assays and analyzed the dissociation kinetics of labeled antigen under continuous flow conditions. The effect of the flow on the dissociation kinetics was determined by calculation of the apparent dissociation rate constants (kd) which increase with an increase in the flow rate. These dissociation rate constants are approximately 20- to 30-fold lower than those obtained from displacement studies (i.e., in the presence of competing unlabeled antigen). The difference in the dissociation rate constants obtained in the two studies is most likely a function of the degree of reassociation. The results of this study provide a basis for better understanding antibody kinetics at solid-liquid interfaces under flow conditions.  相似文献   

13.
The tumor suppressor p53 is a hub protein with a multitude of binding partners, many of which target its intrinsically disordered N-terminal domain, p53-TAD. Partners, such as the N-terminal domain of MDM2, induce formation of local structure and leave the remainder of the domain apparently disordered. We investigated segmental chain motions in p53-TAD using fluorescence quenching of an extrinsic label by tryptophan in combination with fluorescence correlation spectroscopy (PET-FCS). We studied the loop closure kinetics of four consecutive segments within p53-TAD and their response to protein binding and phosphorylation. The kinetics was multiexponential, showing that the conformational ensemble of the domain deviates from random coil, in agreement with previous findings from NMR spectroscopy. Phosphorylations or binding of MDM2 changed the pattern of intrachain kinetics. Unexpectedly, we found that upon binding and phosphorylation chain motions were altered not only within the targeted segments but also in remote regions. Long-range interactions can be induced in an intrinsically disordered domain by partner proteins that induce apparently only local structure or by post-translational modification.  相似文献   

14.
Recent studies have shown that semiconductor surfaces such as silicon and diamond can be functionalized with organic monolayers, and that these monolayer films can be used to tether biomolecules such as DNA to the surfaces. Electrical measurements of these interfaces show a change in response to DNA hybridization and other biological binding processes, but the fundamental nature of the electrical signal transduction has remained unclear. We have explored the electrical impedance of polycrystalline and single-crystal diamond surfaces modified with an organic monolayer produced by photochemical reaction of diamond with 1-dodecene. Our results show that, by measuring the impedance as a function of frequency and potential, it is possible to dissect the complex interfacial structure into frequency ranges where the total impedance is controlled by the molecular monolayer, by the diamond space-charge region, and by the electrolyte. The results have implications for understanding the ability to use molecularly modified semiconductor surfaces for applications such as chemical and biological sensing.  相似文献   

15.
Chalcones are a group of compounds widely distributed in plant kingdom. The aim of this study was to assess the neurite outgrowth stimulatory activity of selected chalcones, namely helichrysetin, xanthohumol and flavokawin-C. Using adherent rat pheochromocytoma (PC12 Adh) cells, the chalcones were subjected to neurite outgrowth assay and the extracellular nerve growth factor (NGF) levels were determined. Xanthohumol (10 μg/mL) displayed the highest (p < 0.05) percentage of neurite-bearing PC12 Adh cells and the highest (p < 0.05) NGF level in the culture medium of xanthohumol-treated cells. While, helichrysetin induced a moderately high numbers of neurite-bearing cells, flavokawin-C did not stimulate neurite outgrowth. This work supports the potential use of xanthohumol as a potential neuroactive compound to stimulate neurite outgrowth.  相似文献   

16.
Neurite loss is one of the cardinal features of neuronal injury. Apart from neuroprotection, reorganization of the lost neuronal network in the injured brain is necessary for the restoration of normal physiological functions. Neuritogenic activity of endogenous molecules in the brain such as nerve growth factor is well documented and supported by scientific studies which show innumerable compounds having neurite outgrowth activity from natural sources. Since the damaged brain lacks the reconstructive capacity, more efforts in research are focused on the identification of compounds that promote the reformation of neuronal networks. An abundancy of natural resources along with the corresponding activity profiles have shown promising results in the field of neuroscience. Recently, importance has also been placed on understanding neurite formation by natural products in relation to neuronal injury. Arrays of natural herbal products having plentiful active constituents have been found to enhance neurite outgrowth. They act synergistically with neurotrophic factors to promote neuritogenesis in the diseased brain. Therefore use of natural products for neuroregeneration provides new insights in drug development for treating neuronal injury. In this study, various compounds from natural sources with potential neurite outgrowth activity are reviewed in experimental models.  相似文献   

17.
By choosing neuroimmunophilin FKBP12 as a therapeutical target, we have attempted to discover a new structural drug for treating neurodegenerative disease. This drug should possess neurotrophic activity and not affect the immune system. Based on the crystal structure of FKBP12, FK506 and Calcineurin complex, a series of small organic molecules were designed. These molecules were to have the ability of binding to FKBP12 in a virtual screening. By using a solution parallel synthetic method, these compounds were synthesized. The neuroprotective and neuroregenerative activities of these compounds were evaluated by binding assays, PC12 cells survival and neurite outgrowth model, chick dorsal root ganglion cultures (DRG) and 6-OHDA lesioned mice sympathetic nerve endings model. The evaluation results of these compounds showed that compound N308 has great promise as a candidate for a neuroprotective and neuroregenerative agent.  相似文献   

18.
导电聚苯胺/MnO2空气阴极氧还原动力学   总被引:1,自引:0,他引:1  
采用动电位扫描、交流阻抗技术研究了导电聚苯胺/MnO2复合阴极上氧还原反应动力学.动电位扫描表明氧在该复合阴极上还原的极化曲线服从Butler-Volmer公式,表观标准活化能为184.9 kJ/mol,反应为电化学步骤控制;交流阻抗谱观察到氧阴极还原由3个明显的线圈组成,表明氧阴极还原分3步进行,第1个圆弧随过电位的增大而显著减小,表明第1步电荷转移过程的确为氧还原反应的速率控制步骤;导电聚苯胺的高比表面积与MnO2的多微毛细管结构使氧在该复合电极上还原变得容易.  相似文献   

19.
Neurite outgrowth is an important preceding step for the development of nerve systems. Given that the in vivo environments of neurons consist of numerous hierarchical micro/nanotopographies, there have been many efforts to investigate the relationship between neuronal behaviors and surface topography. The acceleration of neurite outgrowth was recently reported on surfaces with a periodic nanotopography, but the biological mechanism has not yet been elucidated. In this work, the initial neurite development of hippocampal neurons on assembled silica beads with diameters ranging from 700 to 1800 nm was explored. The acceleration of neurite outgrowth increased with the surface‐pitch size and leveled off after a pitch of 1 μm. Biochemical analysis indicated that cytoskeletal actin dynamics were primarily responsible for the recognition of surface topography. This work contributes to the emerging research field of topographical neurochemistry, as well as applied fields including neuroregeneration and neuroprosthetics.  相似文献   

20.
Lysophosphatidylcholine (LPC) is a bioactive lipid generated by phospholipase A2-mediated hydrolysis of phosphatidylcholine. In the present study, we demonstrate that LPC stimulates phospholipase D2 (PLD2) activity in rat pheochromocytoma PC12 cells. Serum deprivation induced cell death of PC12 cells, as demonstrated by decreased viability, DNA fragmentation, and increased sub-G1 fraction of cell cycle. LPC treatment protected PC12 cells partially from the cell death and induced neurite outgrowth of the cells. Overexpression of PLD2 drastically enhanced the LPC-induced inhibition of apoptosis and neuritogenesis. Pretreatment of the cells with 1-butanol, a PLD inhibitor, completely abrogated the LPC-induced inhibition of apoptosis and neurite outgrowth in PC12 cells overexpressing PLD2. These results indicate that LPC possesses the neurotrophic effects, such as anti-apoptosis and neurite outgrowth, through activation of PLD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号