首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent experimental work on fast protein folding brings about an intriguing paradox. Microsecond-folding proteins are supposed to fold near or at the folding speed limit (downhill folding), but yet their folding behavior seems to comply with classical two-state analyses, which imply the crossing of high free energy barriers. However, close inspection of chemical and thermal denaturation kinetic experiments in fast-folding proteins reveals systematic deviations from two-state behavior. Using a simple one-dimensional free energy surface approach we find that such deviations are indeed diagnostic of marginal folding barriers. Furthermore, the quantitative analysis of available fast-kinetic data indicates that many microsecond-folding proteins fold downhill in native conditions. All of these proteins are then promising candidates for an atom-by-atom analysis of protein folding using nuclear magnetic resonance.1 We also find that the diffusion coefficient for protein folding is strongly temperature dependent, corresponding to an activation energy of approximately 1 kJ.mol-1 per protein residue. As a consequence, the folding speed limit at room temperature is about an order of magnitude slower than the approximately 1 micros estimates from high-temperature T-jump experiments. Our analysis is quantitatively consistent with the available thermodynamic and kinetic data on slow two-state folding proteins and provides a straightforward explanation for the apparent fast-folding paradox.  相似文献   

2.
To potentially cure neurodegenerative diseases, we need to understand on a molecular level what triggers the complex folding mechanisms and shifts the equilibrium from functional to pathological isoforms of proteins. The development of small peptide models that can serve as tools for such studies is of paramount importance. We describe the de novo design and characterization of an alpha-helical coiled coil based model peptide that contains structural elements of both alpha-helical folding and beta-sheet formation. Three distinct secondary structures can be induced at will by adjustment of pH or concentration. Low concentrations at pH 4.0 yield globular particles of the unfolded peptide, while at the same pH, but at higher concentration, defined beta-sheet ribbons are formed. In contrast, at high concentrations and pH 7.4, the peptide forms highly ordered alpha-helical fibers. Thus, this system allows one to systematically study now the consequences of the interplay between peptide and protein primary structure and environmental factors for peptide and protein folding on a molecular level.  相似文献   

3.
ABSTRACT: BACKGROUND: Protein-protein interactions are at the basis of many cellular processes, and they are also involved in the interaction between pathogens and their host(s). Many intracellular pathogenic bacteria translocate proteins called effectors into the cytoplasm of the infected host cell, and these effectors can interact with one or several host protein(s). An effector named RicA was recently reported in Brucella abortus to specifically interact with human Rab2 and to affect intracellular trafficking of this pathogen. RESULTS: In order to identify regions of the RicA protein involved in the interaction with Rab2, RicA was subjected to extensive random mutagenesis using error prone polymerase chain reaction. The resulting allele library was selected by the yeast two-hybrid assay for Rab2-interacting clones that were isolated and sequenced, following the "absence of interference" approach. A tridimensional model of RicA structure was used to position the substitutions that did not affect RicA-Rab2 interaction, giving a "negative image" of the putative interaction region. Since RicA is a bacterial conserved protein, RicA homologs were also tested against Rab2 in a yeast two-hybrid assay, and the C. crescentus homolog of RicA was found to interact with human Rab2. Analysis of the RicA structural model suggested that regions involved in the folding of the "beta helix" or an exposed loop with the IGFP sequence could also be involved in the interaction with Rab2. Extensive mutagenesis of the IGFP loop suggested that loss of interaction with Rab2 was correlated with insolubility of the mutated RicA, showing that "absence of interference" approach also generates surfaces that could be necessary for folding. CONCLUSION: Extensive analysis of substitutions in RicA unveiled two structural elements on the surface of RicA, the most exposed beta-sheet and the IGFP loop, which could be involved in the interaction with Rab2 and protein folding. Our analysis of mutants in the IGFP loop suggests that, at least for some mono-domain proteins such as RicA, protein interaction analysis using allele libraries could be complicated by the dual effect of many substitutions affecting both folding and protein-protein interaction.  相似文献   

4.
Miniproteins provide useful model systems for understanding the principles of protein folding and design. These proteins also serve as useful test cases for theories of protein folding, and their small size and ultrafast folding kinetics put them in a regime of size and time scales that is now becoming accessible to molecular dynamics simulations. Previous estimates have suggested the "speed limit" for folding is on the order of 1 mus. Here a computationally designed mutant of the 20-residue Trp-cage miniprotein, Trp2-cage, is presented. The Trp2-cage has greater stability than the parent and folds on the ultrafast time scale of 1 mICROs at room temperature, as determined from infrared temperature-jump experiments.  相似文献   

5.
H alpha chemical shifts are often used as indicators of secondary structure formation in protein structural analysis and peptide folding studies. On the basis of NMR analysis of model beta-sheet and alpha-helical peptides, together with a statistical analysis of protein structures for which NMR data are available, we show that although the gross pattern of H alpha chemical shifts reflects backbone torsion angles, longer range effects from distant amino acids are the dominant factor determining experimental chemical shifts in beta-sheets of peptides and proteins. These show context-dependent variations that aid structural assignment and highlight anomalous shifts that may be of structural significance and provide insights into beta-sheet stability.  相似文献   

6.
The contributions of interstrand side chain-side chain contacts to beta-sheet stability have been examined with an autonomously folding beta-hairpin model system. RYVEV(D)PGOKILQ-NH2 ((D)P = D-proline, O = ornithine) has previously been shown to adopt a beta-hairpin conformation in aqueous solution, with a two-residue loop at D-Pro-Gly. In the present study, side chains that display interstrand NOEs (Tyr-2, Lys-9, and Leu-11) are mutated to alanine or serine, and the conformational impact of the mutations is assessed. In the beta-hairpin conformation Tyr-2 and Leu-11 are directly across from one another (non-hydrogen bonded pair). This "lateral" juxtaposition of two hydrophobic side chains appears to contribute to beta-hairpin conformational stability, which is consistent with results from other beta-sheet model studies and with statistical analyses of interstrand residue contacts in protein crystal structures. Interaction between the side chains of Tyr-2 and Lys-9 also stabilizes the beta-hairpin conformation. Tyr-2/Lys-9 is a "diagonal" interstrand juxtaposition because these residues are not directly across from one another in terms of the hydrogen bonding registry between the strands. This diagonal interaction arises from the right-handed twist that is commonly observed among beta-sheets. Evidence of diagonal side chain-side chain contacts has been observed in other autonomously folding beta-sheet model systems, but we are not aware of other efforts to determine whether a diagonal interaction contributes to beta-sheet stability.  相似文献   

7.
The development of peptide beta-hairpins is problematic, because folding depends on the amino acid sequence and changes to the sequence can significantly decrease folding. Robust beta-hairpins that can tolerate such changes are attractive tools for studying interactions involving protein beta-sheets and developing inhibitors of these interactions. This paper introduces a new class of peptide models of protein beta-sheets that addresses the problem of separating folding from the sequence. These model beta-sheets are macrocyclic peptides that fold in water to present a pentapeptide beta-strand along one edge; the other edge contains the tripeptide beta-strand mimic Hao [JACS 2000, 122, 7654] and two additional amino acids. The pentapeptide and Hao-containing peptide strands are connected by two delta-linked ornithine (deltaOrn) turns [JACS 2003, 125, 876]. Each deltaOrn turn contains a free alpha-amino group that permits the linking of individual modules to form divalent beta-sheets. These "cyclic modular beta-sheets" are synthesized by standard solid-phase peptide synthesis of a linear precursor followed by solution-phase cyclization. Eight cyclic modular beta-sheets 1a-1h containing sequences based on beta-amyloid and macrophage inflammatory protein 2 were synthesized and characterized by 1H NMR. Linked cyclic modular beta-sheet 2, which contains two modules of 1b, was also synthesized and characterized. 1H NMR studies show downfield alpha-proton chemical shifts, deltaOrn delta-proton magnetic anisotropy, and NOE cross-peaks that establish all compounds but 1c and 1g to be moderately or well folded into a conformation that resembles a beta-sheet. Pulsed-field gradient NMR diffusion experiments show little or no self-association at low (相似文献   

8.
An ageing society faces an increasing number of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Creutzfeld-Jacob disease. The deposition of amyloid fibrils is a pathogenic factor causing the destruction of neuronal tissue. Amyloid-forming proteins are mainly alpha-helical in their native conformation, but undergo an alpha-helix to beta-strand conversion before or during fibril formation. Partially unfolded or misfolded beta-sheet fragments are discussed as direct precursors of amyloids. To potentially cure neurodegenerative diseases we need to understand the complex folding mechanisms that shift the equilibrium from the functional to the pathological isoform of the proteins involved. This paper describes a novel approach that allows us to study the interplay between peptide primary structure and environmental conditions for peptide and protein folding in its whole complexity on a molecular level. This de novo designed peptide system may achieve selective inhibition of fibril formation.  相似文献   

9.
Because protein folding dynamics are heavily overdamped, Kramers theory predicts the rate of folding to scale inversely with the reaction friction, which is usually interpreted to mean the solvent viscosity. This does not mean, however, that the speed of folding can increase without limit as solvent viscosity decreases. We show that, in a sufficiently fast-folding protein, the folding speed approaches a finite limit at low solvent viscosity, indicating a reaction controlled by internal friction.  相似文献   

10.
Understanding the folding of the β-hairpin is a crucial step in studying how β-rich proteins fold. We have studied CLN025, an optimized ten residue synthetic peptide, which adopts a compact, well-structured β-hairpin conformation. Formation of the component β-sheet and β-turn structures of CLN025 was probed independently using a combination of equilibrium Fourier transform infrared spectroscopy and laser-induced temperature jump coupled with time-resolved infrared and fluorescence spectroscopies. We find that CLN025 is an ultrafast folder due to its small free energy barrier to folding and that it exceeds the predicted speed limit for β-hairpin formation by an order of magnitude. We also find that the folding mechanism cannot be described by a simple two-state model, but rather is a heterogeneous process involving two independent parallel processes. Formation of stabilizing cross-strand hydrophobic interactions and turn alignment occur competitively, with relaxation lifetimes of 82 ± 10 and 124 ± 10 ns, respectively, at the highest probed temperature. The ultrafast and heterogeneous folding kinetics observed for CLN025 provide evidence for folding on a nearly barrierless free energy landscape, and recalibrate the speed limit for the formation of a β-hairpin.  相似文献   

11.
The folding and unfolding kinetics of single molecules, such as proteins or nucleic acids, can be explored by mechanical pulling experiments. Determining intrinsic kinetic information, at zero stretching force, usually requires an extrapolation by fitting a theoretical model. Here, we apply a recent theoretical approach describing molecular rupture in the presence of force to unfolding kinetic data obtained from coarse-grained simulations of ubiquitin. Unfolding rates calculated from simulations over a broad range of stretching forces, for different pulling directions, reveal a remarkable "turnover" from a force-independent process at low force to a force-dependent process at high force, akin to the "roll-over" in unfolding rates sometimes seen in studies using chemical denaturant. While such a turnover in rates is unexpected in one dimension, we demonstrate that it can occur for dynamics in just two dimensions. We relate the turnover to the quality of the pulling direction as a reaction coordinate for the intrinsic folding mechanism. A novel pulling direction, designed to be the most relevant to the intrinsic folding pathway, results in the smallest turnover. Our results are in accord with protein engineering experiments and simulations which indicate that the unfolding mechanism at high force can differ from the intrinsic mechanism. The apparent similarity between extrapolated and intrinsic rates in experiments, unexpected for different unfolding barriers, can be explained if the turnover occurs at low forces.  相似文献   

12.
We develop a tight-binding molecular approach to quantify the degree of folding of a macromolecular chain. This approach is based on the linear combination of "dihedral" orbitals to give molecular orbitals (LCDO-MO). The dihedral orbitals are a set of orbitals situated in each dihedral angle of the chain. The LCDO-MO approach remains basically topological, and we display its direct relation to known graph theoretical concepts. Using this approach, we define the dihedral electronic energy and the dihedral electronic partition function of a linear macromolecular chain. We show that the partition function per dihedral angle quantifies the degree of folding of the dihedral graph. We analyze the empirical relationship between these two functions by using a series of 100 proteins. We also study the relation between these two functions and the percentages of secondary structure for these proteins. Finally, we illustrate the use of the dihedral energy and the partition function in structure-property studies of proteins by analyzing the binding of steroids to DB3 antibody.  相似文献   

13.
This paper reports the design, synthesis, and characterization of a family of cyclic peptides that mimic protein quaternary structure through beta-sheet interactions. These peptides are 54-membered-ring macrocycles comprising an extended heptapeptide beta-strand, two Hao beta-strand mimics [JACS 2000, 122, 7654] joined by one additional alpha-amino acid, and two delta-linked ornithine beta-turn mimics [JACS 2003, 125, 876]. Peptide 3a, as the representative of these cyclic peptides, contains a heptapeptide sequence (TSFTYTS) adapted from the dimerization interface of protein NuG2 [PDB ID: 1mio]. 1H NMR studies of aqueous solutions of peptide 3a show a partially folded monomer in slow exchange with a strongly folded oligomer. NOE studies clearly show that the peptide self-associates through edge-to-edge beta-sheet dimerization. Pulsed-field gradient (PFG) NMR diffusion coefficient measurements and analytical ultracentrifugation (AUC) studies establish that the oligomer is a tetramer. Collectively, these experiments suggest a model in which cyclic peptide 3a oligomerizes to form a dimer of beta-sheet dimers. In this tetrameric beta-sheet sandwich, the macrocyclic peptide 3a is folded to form a beta-sheet, the beta-sheet is dimerized through edge-to-edge interactions, and this dimer is further dimerized through hydrophobic face-to-face interactions involving the Phe and Tyr groups. Further studies of peptides 3b-3n, which are homologues of peptide 3a with 1-6 variations in the heptapeptide sequence, elucidate the importance of the heptapeptide sequence in the folding and oligomerization of this family of cyclic peptides. Studies of peptides 3b-3g show that aromatic residues across from Hao improve folding of the peptide, while studies of peptides 3h-3n indicate that hydrophobic residues at positions R3 and R5 of the heptapeptide sequence are important in oligomerization.  相似文献   

14.
The 1,6-dihydro-3(2H)-pyridinone unit is an amino acid surrogate that favors the extended beta-strand conformation when incorporated in an oligopeptide ("@-tide") strand. We now report that the circular dichroism (CD) signature of the vinylogous amide in the @-unit is sensitive to conformation in organic and aqueous solvents and, therefore, is useful as a quantitative measure of @-tide association and folding processes that involve this moiety. Moreover, this method can be employed in the micromolar concentration range, which is not readily accessible using other techniques. Measurements of @-tide dimerization and beta-hairpin folding equilibria not only demonstrate the utility and generality of this approach but also provide a way to quantify amino acid side chain-side chain interactions relevant to beta-sheet stability.  相似文献   

15.
beta-Sheets are a common secondary structural element found in proteins. The difficulty in studying beta-sheet folding and stability is that their formation is often dependent on the tertiary structural environment within the protein. However, the discovery of water-soluble beta-hairpin peptides has allowed them to be used as model systems because they represent the smallest units of beta-sheet structure independent of tertiary structural context. Trpzip4 has been used as a model beta-hairpin peptide to study beta-hairpin folding and stability because it is highly soluble in aqueous solutions, maintains its monomeric state, and shows reversible cooperative thermal unfolding. The previously determined thermodynamic parameters for trpzip4 thermal unfolding vary depending on the spectroscopic probe used, which questions the assumption that trpzip4 unfolds in a two-state manner. Here we provide direct calorimetric evidence that the unfolding of trpzip4 follows a two-state unfolding mode. Furthermore, the thermal unfolding of trpzip4 monitored using near- and far-UV-CD yielded thermodynamic parameters similar to those determined calorimetrically, providing additional evidence for a two-state unfolding mode.  相似文献   

16.
The most abundant structural element in protein aggregates is the beta-sheet. Designed peptides that fold into a beta-sheet structure upon binding to lipid membranes are useful models to elucidate the thermodynamic characteristics of the random coil <-->beta-structure transition. Here, we examine the effect of strand length on the random coil <--> beta-sheet transition of the (KIGAKI)n peptide with the total chain length varying between 7 and 30 amino acids. The beta-sheet content of the peptides in the presence and absence of membranes was measured with circular dichroism spectroscopy. The peptides were titrated with small unilamellar lipid vesicles, and the thermodynamic binding parameters were determined with isothermal titration calorimetry (ITC). Membrane binding includes at least two processes, namely (i) the transfer of the peptide from the aqueous phase to the lipid surface and (ii) the conformational change from a random coil conformation to a beta-sheet structure. CD spectroscopy and ITC analysis demonstrate that beta-sheet formation depends cooperatively on the peptide chain length with a distinct increase in beta-structure for n > 10-12. Binding to the lipid membrane is an entropy-driven process as the binding enthalpy is always endothermic. The contribution of the beta-sheet folding reaction to the overall process was determined with analogues of the KIGAKI repeat where two adjacent amino acids were replaced by their D-enantiomers. The folding reaction for peptides with n >or= 12 is characterized by a negative free folding energy of DeltaG(degree)beta approximately equal -0.15 kcal/mol per amino acid residue. The folding step proper is exothermic with DeltaH(degree)(beta) approximately equal -0.2 to -0.6 kcal/mol per residue and counteracted by a negative entropy term TDeltaS(degree)(beta) = -0.1 to -0.5 kcal/mol per residue, depending on the chain length (18 相似文献   

17.
This Article introduces a simple chemical model of a beta-sheet (artificial beta-sheet) that dimerizes by parallel beta-sheet formation in chloroform solution. The artificial beta-sheet consists of two N-terminally linked peptide strands that are linked with succinic or fumaric acid and blocked along one edge with a hydrogen-bonding template composed of 5-aminoanisic acid hydrazide. The template is connected to one of the peptide strands by a turn unit composed of (S)-2-aminoadipic acid (Aaa). 1H NMR spectroscopic studies show that these artificial beta-sheets fold in CDCl3 solution to form well-defined beta-sheet structures that dimerize through parallel beta-sheet interactions. Most notably, all of these compounds show a rich network of NOEs associated with folding and dimerization. The compounds also exhibit chemical shifts and coupling constants consistent with the formation of folded dimeric beta-sheet structures. The aminoadipic acid unit shows patterns of NOEs and coupling constants consistent with a well-defined turn conformation. The present system represents a significant step toward modeling the type of parallel beta-sheet interactions that occur in protein aggregation.  相似文献   

18.
The folding mechanism and dynamics of a helical protein may strongly depend on how quickly its constituent alpha-helices can fold independently. Thus, our understanding of the protein folding problem may be greatly enhanced by a systematic survey of the folding rates of individual alpha-helical segments derived from their parent proteins. As a first step, we have studied the relaxation kinetics of the central helix (L9:41-74) of the ribosomal protein L9 from the bacterium Bacillus stearothermophilus , in response to a temperature-jump ( T-jump) using infrared spectroscopy. L9:41-74 has been shown to exhibit unusually high helicity in aqueous solution due to a series of side chain-side chain interactions, most of which are electrostatic in nature, while still remaining monomeric over a wide concentration range. Thus, this peptide represents an excellent model system not only for examining how the folding rate of naturally occurring helices differs from that of the widely studied alanine-based peptides, but also for estimating the folding speed limit of (small) helical proteins. Our results show that the T-jump induced relaxation rate of L9:41-74 is significantly slower than that of alanine-based peptides. For example, at 11 degrees C its relaxation time constant is about 2 micros, roughly seven times slower than that of SPE(5), an alanine-rich peptide of similar chain length. In addition, our results show that the folding rate of a truncated version of L9:41-74 is even slower. Taken together, these results suggest that individual alpha-helical segments in proteins may fold on a time scale that is significantly slower than the folding time of alanine-based peptides. Furthermore, we argue that the relaxation rate of L9:41-74 measured between 8 and 45 degrees C provides a realistic estimate of the ultimate folding rate of (small) helical proteins over this temperature range.  相似文献   

19.
The effects of N-methylation and chain length on a cation-pi interaction have been investigated within the context of a beta-hairpin peptide. Significant enhancement of the interaction and structural stabilization of the hairpin have been observed upon Lys methylation. Thermodynamic analysis indicates an increased entropic driving force for folding upon methylation of Lys residues. Comparison of lysine to analogues ornithine (Orn) and diaminobutyric acid (Dab) indicates that lysine provides the strongest cation-pi interaction and also provides the most stable beta-hairpin due to a combination of side chain-side chain interactions and beta-sheet propensities. These studies have significance for the recognition of methylated lysine in histone proteins.  相似文献   

20.
The assumption that similar structures have similar folding probabilities (p(fold)) leads naturally to a procedure to evaluate p(fold) for every snapshot saved along an equilibrium folding-unfolding trajectory of a structured peptide or protein. The procedure utilizes a structurally homogeneous clustering and does not require any additional simulation. It can be used to detect multiple folding pathways as shown for a three-stranded antiparallel beta-sheet peptide investigated by implicit solvent molecular dynamics simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号