首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I.IntroductionBinghamfluidisonebranchofnon-Newtonianfluid,suchascrudeparaffinoil,highsediment--ladenwaterflow,highconcentrationmudandthelikewhicharetransportedinpipelinesinmanyindustries,soit'sofgreatsignificancetostudytheflowmechanismsofBinghamfluid.Tsaietal.II]studiedthelinkagebetweenBinghamfluidandpluggedflow.Wangetal.I2]measuredtheturbulencestructureofBinghammud.Mengetal.[3]researchedthekineticenergycorrectionfactorofBinghamfluidinacircularpipe.However,thestudyofBinghamfluidsofarisn't…  相似文献   

2.
This paper studies similarity solutions for pulsatile flow in a tube with wall injection and suction. The Navier-Stokes equations are reduced to a system of three ordinary differential equations. Two of the equations represent the effects of suction and injection on the steady flow while the third represents the effects of suction and injection on pulsatile flow. Since the equations for steady flow have been studied previously, the analysis centers on the third equation. This equation is solved numerically and by the method of matched asymptotic expansions. The exact numerical solutions compare well with the asymptotic solutions.The effects of suction and injection on pulsatile flow are the following: a) Small values of suction can cause a resonance-like effect for low frequency pulsatile flow. b) The annular effect still occurs but for large injection or suction the frequency at which this effect becomes dominant depends on the cross-flow Reynolds number. c) The maximum shear stress at the wall is decreased by injection, but may be increased or decreased by suction.Nomenclature a radius of the tube - a 0 2 i 2 - A0, B0, C0, D0, E0 constant coefficients appearing in the expression for pressure - b a non-dimensionalized length - b 0 2 i 2 2 - b k complex coefficients of a power series - B - C 1, C 2, D complex constants - d - D 1,2 - f() F(a 1/2)/aV - f 0,f 1,... functions of order one used in asymptotic expansions of f() - F(r) rv r - g() - G(r) a steady component of velocity in axial direction - h() 4/C0 a 2 H(a 1/2) - h 0,h 1,h 2,...;l 0,l 1,l 2,... functions of order one used in asymptotic expansions for h() in outer regions - H(r) complex valued function giving unsteady component of velocity - H 0, H 1, H 2, ... K 0, K 1, K 2, ...; L 0, L 1, L 2, ... functions of order one used in asymptotic expansions for h() in inner regions - i - J 0, J 1, Y 0, Y 1 Bessel functions of first and second kind - k - K Rk/2b 2 - O order symbol - p pressure - p 1(z, t) arbitrary function related to pressure - r radial coordinate - r 0 (1+16 4 4)1/4 - R Va/, the crossflow Reynolds number - t time - u() G(r)/V - v r radial velocity - v z axial velocity - V constant velocity at which fluid is injected or extracted - z axial coordinate - 2 a 2/4 - 4.196 - small parameter; =–2/R (Sect. 4); =–R/2 (Sect. 5); =2/R(Sect. 6) - r 2/a 2 - * 0.262 - Arctan (4 2 2) - , inner variables - kinematic viscosity - b - * zero of g() - density - (r, t) arbitrary function related to axial velocity - frequency  相似文献   

3.
This note is concerned with a laminar pipe flow of a non-Newtonian fluid under the action of a small pulsating pressure gradient superposed to a steady one. The constitutive law describing the rheological behaviour of the fluid is the so-called power law (Ostwald–de Waele). An approximated analytical solution is found for the velocity, as power series of the amplitude of the periodic disturbance. The analytic solution is compared with a direct numerical solution and the perfect accord of the values obtained is underscored.  相似文献   

4.
An experimental investigation of the transition of a laminar flow regime into a turbulent one has been carried out in [1] for a flow in a circular pipe which is organized due to injection through the porous lateral surface with a jammed leading end of the pipe. It was established as a result that injection leads to an increase in stability of the laminar flow regime and increases the Reynolds number of the transition to 10,000 instead of the value 2300 which is characteristic of flow in a circular pipe with impenetrable walls. A similar effect was discovered in [2], in which it was also obtained that the Reynolds number of stability loss under the action of injection can take values significantly larger than in pipes with impenetrable walls. The phenomenon of relaminarization of a turbulent flow in the initial section of a circular pipe under the action of injection has been experimentally detected at the entrance for relatively low Reynolds numbers in [3, 4]. Theoretical investigations of stability of flow with injection have been performed only for a plane channel [5, 6]. A calculation is made in this paper of the stability of a hydrodynamically developed flow in a circular pipe with injection through a porous lateral surface.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 82–86, May–June, 1984.  相似文献   

5.
The vorticity formed in the cross section of a turbulent flow in a straight circular pipe rotating about its longitudinal axis decreases the values of the turbulent stresses, turbulence energy, and dissipation rate along the pipe. The results of laboratory experiments and calculations by the second-order closure model of turbulent transfer are presented. On the whole, the model using a system of transport equations yields better agreement with experimental data than the models with algebraic relations for second-order moments. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 2, pp. 103–116, March–April, 1998.  相似文献   

6.
The results of an experimental investigation of the hydraulic resistance of a circular pipe for turbulent flow with periodic flow rate fluctuations are presented. The presence of resonance phenomena in the pipe is revealed. It is established that, for hydrodynamic nonstationarity, the pipe resistance is a nonmonotonous function of the frequency of the imposed flow rate fluctuations and differs from the pipe resistance in the stationary flow regime. Under the conditions considered, to find the pipe resistance it is necessary to take into account the variation of the flow kinetic energy with respect to the phase of the imposed flow rate fluctuations due to the deformation of the velocity profile.  相似文献   

7.
The stability of an axisymmetric flow of viscous gas in a circular pipe, which models the Burgers vortex in the pipe axis neighborhood, is studied within the linear theory framework. Neutral curves for the most unstable disturbances are calculated. The influence of the characteristic Mach number on the flow stability is investigated. It is shown that for a given model velocity distribution the Mach number affects only the temperature and pressure profiles of the main undisturbed flow. In this case, for the disturbance types considered, as the Mach number increases, the critical Reynolds number corresponding to loss of stability decreases. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 35–41, January–February, 1999. The work received financial support from the Russian Foundation for Basic Research (project No. 96-01-00586).  相似文献   

8.
9.
Summary A set of constitutive equations for a group of incompressible materials of technological importance previously proposed by the authors is used to analyze the axial flow of a gelling Binghamlike material. Through five material parameters these constitutive equations account for the phenomena of breakdown in rigidity after deformation has occurred and of recovery in rigidity in the state of continued deformation or in the state of rest. Due to the complexity of predicting the flow of such nonlinear materials only the steady state behaviour in general seems to be tractable.The solution presented here describes the steady state axial flow of this type material through a circular pipe. It is shown that, depending on the choice of material parameters, two separate solutions may occur. As in the case of axial flow of a Bingham material or a retarded Bingham material a concentric core with rigid body motion is found. Analytically the radius of this core enters into the formulation of the requirements that must be fulfilled to establish a continuous flow field.It is further shown that volume flow rate dependence on the current pressure gradient may be a function of the loading history. For a specific case this dependence is shown in graphical form.  相似文献   

10.
 Flow characteristics in straight tubes with and without a lateral circular protrusion had been investigated using Particle Image Velocimetry over a range of Reynolds numbers from 400 to 1400, and at Womersley number of 65. The practical interest of the flows considered lies mainly in blood flows through arteries with saccular aneurysm. Both steady and pulsating flow experiments had been conducted. It was found that under the steady flow conditions, a recirculating vortex would be formed inside the circular protrusion. The maximum strength of the vortex would be as low as 10% of the bulk mean velocity in the main tube at the highest Reynolds number tested (i.e. at 1400). Under the pulsating flow conditions, the vortex appeared and disappeared at different phase of a cycle. The sequence was only punctuated by quasi-inviscid flow behavior. The steady flow results only resembled those of the pulsating ones for about 1 10 of the time at each cycle. Received: 13 August 1997/Accepted: 30 June 1998  相似文献   

11.
A flow of a gas-liquid dispersed mixture in a circular pipe with a variable inclination to the horizon, as applied to oil and gas flows in wells, is considered. Within the framework of a multi- fluid approach, the equations of an asymptotic drift-flux model, which contains an algebraic relation between the phase velocities and one momentum equation for the volume-averaged velocity of the mixture, are derived. It is shown that the drift-flux model in this formulation strictly follows from the balance laws under assumption of inertialess velocity slip of the phases in case of validity of one of the following conditions: (i) the dispersed-phase volume fraction is small; (ii) the phase velocity slip may be neglected; or (iii) the flow regime is inertialess and the acceleration of the mixture can be neglected. A numerical algorithm based on the SIMPLE method is implemented for solving the obtained equations of the drift-flux model. The possibility of modeling the gravitational segregation and the pressure buildup in a shut-in well and transient slug flows is demonstrated.  相似文献   

12.
13.
The transient response of a non-Newtonian power-law fluid to several assumed forms of pressure pulse in a circular tube is analysed by the semi-direct variational method of Kanntovorich. Velocity profiles are shown for several power-law indices, and by comparing the results for the Newtonian case with the exact solution given by Szymanski, it is observed that the results are good to 5%. More accurate solutions have been found for the case involving Newtonian fluid flow. New results are reported concerning the effect of a triangular pressure pulse on the development and transient response of the flow field of a non-Newtonian fluid.  相似文献   

14.
Entropy generation in a circular pipe is analyzed numerically. A two-dimensional solution for the velocity ant temperature profiles is obtained considering temperature dependent thenmophysical properties. Uniform wall heat flux case is considered as the thermal boundary condition. The distribution of the entropy generation rate is investigated throughout the volume of the fluid as it flows through the pipe. Engine oil is selected as the working fluid. In addition, ethylene glycol and air are used in a parametric study. The total entropy generation rate is calculated by integration over the various cross-sections as well as over the entire volume. The results are compared with those obtained for the constant viscosity case. A considerable discrepancy is found between the two cases since the viscosity of these fluids is highly sensitive to the temperature variation.  相似文献   

15.
16.
Summary The fully developed heat transfer in laminar flow of Bingham material through a straight circular pipe has been analysed when the effect of dissipation is taken into consideration. The temperature distribution, the mixed-mean temperature and the Nusselt number are calculated and found to depend on the Modified Reynolds number, the Brinkman number and the rate of heat transfer at the wall. The effect of dissipation is to increase the temperature and the mixed-mean temperature of the material while the Nusselt number is found to decrease with increasing dissipation.Nomenclature r, , z space coordinates - u, v, w velocity components - density of the fluid - modulus of rigidity (constant) - bulk modulus - e kk, the dilation - 1 coefficient of viscosity (constant) - e ik strain tensor - d ik rate of strain tensor - p ik stress tensor primes denote deviatoric components of tensors, e.g. - p ik p ik p ik, p=–1/3p kk - yield value (constant) - D/Dt material derivative with regard to time following the particle - R radius of the pipe - r 0 radius of the yield surface (cylindrical) - r=r 0/R non-dimensional radius of the yield surface - T 0 temperature of the pipe - K conductivity - Modified Reynolds number - Br Brinkman number  相似文献   

17.
采用大涡模拟方法和单方程亚格子模式对小尺度量进行模拟。研究了不同强度壁面射流激励对圆管内气相流动的影响,模拟结果给出了射流对瞬态拟序结构发展、时平均流向速度分布的影响。随着射流强度的增加,射流入口附近流体的回流现象增强。射流强度足够大时可以减小管壁处的切应力值,同时会减小壁面附近流动速度,这种速度分布会导致气体夹带颗粒的能力下降,从而在实际两相流动中容易造成壁面附近的气粒返混现象。  相似文献   

18.
A continuum model for two-phase (fluid/particle) flow induced by natural convection is developed and applied to the problem of steady natural convention flow of a particulate suspension through an infinitely long pipe. The wall of the pipe is maintained at a constant temperature. The particle phase is endowed by an artificial viscosity which may be used to model particle-particle interaction in dension suspensions. Boundary conditions borrowed from rarefied gas dynamics are employed for the particle-phase wall conditions. Closed-form solutions for the velocity and temperature profiles are obtained. For the assumptions employed in the problem, the temperatures of both phases in the pipe are predicted to be uniform. A parametric study of some physical parameters involved in the problem is performed to illustrate the influence of these parameters on the velocity profiles of both the fluid and particle phases.  相似文献   

19.
This paper considers the stationary flow of incompressible micropolar fluid through a thin cylindrical pipe governed by the pressure drop between pipe's ends. Its goal is to investigate the influence of the viscosity coefficients on the effective flow. Depending on the magnitude of viscosity coefficients with respect to the pipe's thickness, it derives different asymptotic models and discusses their properties.  相似文献   

20.
Flow characteristics in the near wake of a circular cylinder located close to a fully developed turbulent boundary layer are investigated experimentally using particle image velocimetry (PIV). The Reynolds number based on the cylinder diameter (D) is 1.2×104 and the incident boundary layer thickness (δ) is 0.4D. Detailed velocity and vorticity fields in the wake region (0<x/D<6) are given for various gap heights (S) between the cylinder and the wall, with S/D ranging from 0.1 to 1.0. Both the ensemble-averaged (including the mean velocity vectors and Reynolds stress) and the instantaneous flow fields are strongly dependent on S/D. Results reveal that for S/D⩾0.3, the flow is characterized by the periodic, Kármán-like vortex shedding from the upper and lower sides of the cylinder. The shed vortices and their evolution are revealed by analyzing the instantaneous flow fields using various vortex identification methods, including Galilean decomposition of velocity vectors, calculation of vorticity and swirling strength. For small and intermediate gap ratios (S/D⩽0.6), the wake flow develops a distinct asymmetry about the cylinder centreline; however, some flow quantities, such as the Strouhal number and the convection velocity of the shed vortex, keep roughly constant and virtually independent of S/D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号