首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we systematically investigate local atomic structures of Zr100?x Al x (0???x???72) alloys using molecular dynamics simulations. Radial distribution functions of Zr-Al configurations at 300 K indicate that Zr-Al metallic glasses form only when the Al atomic concentration is larger than 32%. Voronoi polyhedral analysis shows that Zr40Al60 has the highest fraction of ?0,0,12,0? icosahedra around Al atoms, which are characteristic of amorphous microstructures. Variations of thermal expansion coefficient and heat capacity of Zr100?x Al x (40???x???72) metallic glasses as a function of temperature from 1100 to 800?K reveal that Zr40Al60 has the highest transition temperature of 1008?K. To confirm the simulation results, Zr-Al metallic glasses were fabricated using co-sputtering deposition; differential scanning calorimetry testing suggests the highest crystallisation-onset temperature of above 920?K is within Zr100?x Al x where 43?<?x?<?61. The experimental finding is in a good agreement with the simulation predictions.  相似文献   

2.
The diffusion ot Ti atoms in the Ni77Si3B20 metallic glass was studied by the Auger electron spectroscopy. The temperature dependence of the diffusion coefficient obeys the Arrhenius relation with the activation energyE=1·7 eV and the pre-exponential factorD 0=0·86 × ×10–4 m2 s–1. Possible mechanisms of the atomic transport in metallic glasses are discussedThe authors wish to thank Dr. P. Duhaj for providing the metallic glass samples.  相似文献   

3.
The acoustic and dielectric properties of different glasses at audio frequencies and temperatures below 1 K have been investigated with the vibrating reed and a capacitance bridge technique. We found the temperature dependence of the absorption of vitreous silica (Suprasil W) to agree with the predictions of the tunneling model which is commonly used to explain the low temperature behaviour of amorphous materials. The variation of the sound velocity and of the dielectric constant, however, shows significant deviations from the expected behaviour which cannot be accounted for by a simple modification of the model. Instead, it seems to be necessary to introduce a temperature dependence of some relevant model parameters. Moreover, at very low temperatures (T < 0.1 K) the sound velocity strongly depends on the excitation levels. The absence of this effect at higher temperatures proves that it can be ascribed to a nonlinear response of tunneling systems. Similar results were found in sound velocity measurements on a cover glass and on a superconducting metallic glass (Pd30Zr70, Tc = 2.6 K), which indicates that these features are a general aspect of the dynamics of tunneling states in glasses. In contrast to the insulating glasses we found that in Pd30Zr70 also the internal friction is strain dependent.  相似文献   

4.
Single crystals of Cu7GeSe5I superionic conductor were grown by chemical transport. Their electrical conductivity in the frequency range 1.0×106–1.2×109 Hz and in the temperature range 196–295 K was measured. Cu7GeSe5I crystal is shown to exhibit a rather high electrical conductivity (σ295=64.0 S/m at 295 K) and a low activation energy (ΔEa=0.125 eV). Optical absorption edge of Cu7GeSe5I crystals in the temperature range 77–300 K was studied, the temperature dependences of the optical pseudogap and Urbach energy being obtained. The effect of different types of disordering on the Urbach absorption edge and electron–phonon interaction parameters was investigated.  相似文献   

5.
The fundamental absorption edge of glassy alloys of an As–Sb–S system was studied in the temperature range 77–300 K. The spectral and thermal behavior of the fundamental absorption edge of As40–x SbxS60 glasses was shown to be described by an exponential function of phonon energy. The temperature and concentration behavior of the optical band gap in the studied glasses was established. The well-known Varshni relationship was used to describe the temperature dependence of the optical band gap.  相似文献   

6.
X.J. Liu  X.D. Hui  T. Liu 《Physics letters. A》2009,373(29):2488-2493
Local atomic structures of Zr100−xNix (x=33.3, 36, 50 at%) binary metallic glasses were investigated by means of extended X-ray absorption fine structure (EXAFS) probe. Structural parameters show that the Zr-Ni bond length, RZr-Ni, keeps a constant value of 2.62 Å, regardless of alloy compositions. This result implies that there is a strongly chemical interaction between Zr and Ni atoms, leading to significant chemical short-range orders (CSROs) in the present metallic glasses. Further analysis indicates that the SRO structures in these metallic glasses are extremely similar with those in their crystalline counterparts. It is interesting to note that the CSROs in the eutectic Zr64Ni36 metallic glass consist of Zr2Ni-like and ZrNi-like CSROs.  相似文献   

7.
Manganese nanoparticles were grown in silica glass and silica film on silicon substrate by annealing of the sol-gel prepared porous silicate matrices doped with manganese nitrate. Annealing of doped porous silicate matrices was performed at various conditions that allowed to obtain the nanocomposite glasses with various content of metallic Mn. TEM of Mn/SiO2 glass indicates the bimodal size distribution of Mn nanoparticles with mean sizes of 10.5 nm and 21 nm. The absorption and photoluminescence spectra of Mn/SiO2 glasses were measured. In the absorption spectra at 300 nm (4.13 eV) we observed the band attributed to the surface plasmon resonance in Mn nanoparticles. The spectra proved the creation of Mn2+ and Mn3+ ions in silica glass as well. The absorption spectra of Mn/SiO2 glasses annealed in air prove the creation of manganese oxide Mn2O3. The measured reflection spectra of Mn/SiO2 film manifest at 240-310 nm the peculiarity attributed to surface plasmons in Mn nanoparticles.  相似文献   

8.
We have measured the UV absorption spectra of photothermorefractive glasses of the system Na2O-ZnO-Al2O3-NaF-SiO2 doped by cerium oxide in the range of (2.8–5.0) × 104 cm−1 (360–200 nm). The spectra have been processed by the method of dispersion analysis based on the analytical convolution model for the complex dielectric function of glasses. We show that the absorption band centered at 3.3 × 104 cm−1 (∼303 nm) that is attributed to the transition 2F 5/2 → 5d in the Ce3+ ion, is an envelope of three spectral components. The broad absorption range (3.5–4.7) × 104 cm−1 (200–270 nm) that is commonly interpreted as a charge transfer band of the Ce(IV) valence state, is an envelope of at least three spectral components.  相似文献   

9.
Bulk metallic glass formations in the Fe-B-Y-Nb quaternary alloy system were investigated by using the cluster line rule in combination with the minor alloying principle. The Fe-B-Y ternary system was selected as the basic system and the intersections of cluster lines were taken as the basic ternary compositions. The basic compositions were further alloyed with minor amounts of Nb. After 3–5 at.% Nb was added, the basic composition Fe68.6B25.7Y5.7, which was developed from the most densely packed cluster Fe8B3, formed 3 mm bulk metallic glasses. These quaternary bulk metallic glasses (Fe68.6B25.7Y5.7)100−x Nb x (x = 3–5 at.%) are expressed approximately with a unified simple composition formula: (Fe8B3)1(Y, Nb)1. The (Fe68.6B25.7Y5.7)97Nb3 bulk metallic glass has the largest glass forming ability with the following characteristic parameters T g = 907 K, T x = 1006 K, T g/T l = 0.644, γ = 0.434, and longness t = 22 mm. The combination of the cluster line rule and the minor-alloying principle is a promising new route towards the quantitative composition design of multi-component metallic glasses. Supported by the National Natural Science Foundation of China (Grant Nos. 50671018, 50631010 and 50401020) and the National Basic Research Program of China (Grant No. 2007CB613902)  相似文献   

10.
Summary The specific heats of (R2O3) x (P2O5)1−x glasses containing high concentrations of La3+ and Y3+ ions have been measured between 1.5K and 30K. It is shown that, in addition to the usual Debye contribution, there is an excess specific heat arising from localized vibrational states which has been discussed in terms of two distinct models. The first predicts a maximum in the temperature dependence of the excess specific heat associated with the crossover frequency from phonon to fracton behaviour. The phonon-fracton density of states used to fit the excess specific heat gives rise to model parameters having the same magnitudes as those found previously for other glasses including samarium phosphates. The second model, formulated on the basis of soft vibrations in glasses, predicts a minimum in the excess specific heat, which is also observed. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Capanello, Italy, July 4–8, 1994.  相似文献   

11.
Electron paramagnetic resonance (EPR) and optical absorption studies of Li2O–MoO3–B2O3 with varying concentrations of Li2O, MoO3 and B2O3 have been carried out at room temperature. Two series of glasses, one with constant MoO3 (CM) and another with constant borate (CB), have been investigated. Characteristic EPR spectra of Mo5+ have been observed centered around g ≅ 2.00, which are attributed to Mo5+ ion in an octahedral coordination sphere with an axial distortion. The spectra also show strong dependence on the concentration of Li2O and B2O3. Spin concentrations (N) and magnetic susceptibilities (χ) have been calculated. In the CM series, the N values decrease with increasing Li2O content up to 30 mol%, while in the CB series variation of N is found to increase initially up to 20 mol%, and with further increase in the Li2O content the N values tend to decrease. The variation of magnetic susceptibilities is almost similar to that observed with the variation of N. From the optical absorption spectra, an absorption edge (α) has been evaluated. In the CM series, the values of α show a blueshift. On the other hand, in the CB series a redshift is observed. The observed variations in spectral parameters are explained by considering the molybdoborate network. Addition of Li2O to the CM and CB series results in modification of [MoO6/2]0 → [MoOO5/2] and [BO3/2]0 → [BO4/2] → [BOO2/2] groups, respectively, leading to creation of nonbridging oxygens. The optical basicity of the glasses has been evaluated in both the CM and the CB glasses. The optical basicity can be used to classify the covalent-to-ionic ratios of the glass, since an increasing optical basicity indicates decreasing covalency. It is observed that the covalency between Mo5+ ions and oxygen ligands increases in the CB series, whereas in the CM series the covalency between Mo5+ ions and oxygen ligands decreases. Authors' address: R. P. Sreekanth Chakradhar, Glass Technology Laboratory, Central Glass and Ceramic Research Institute, Kolkata 700032, India  相似文献   

12.
A detailed study on the weak localization phenomenon vis-a-vis electron-electron interaction effects in magnetic metallic glasses has been carried out. We measured the electrical conductivity and magnetoconductivity within the temperature range 1.8≤T≤300K. A maximum on the conductivity versus temperature curve exists atT=T m. The conductivity was observed to follow aT 1/2 law forT<T m andT 2 law forT>T m. Magnetoconductivity data of these alloys indicate the prominence of electron-electron interaction at low temperatures. The authors have determined the inelastic scattering field and spin-orbit scattering field from the magnetoconductivity data. The inelastic scattering field obeys aT p law (p=2) at low temperatures.  相似文献   

13.
The results of an isothermal creep investigation of Zr52.5Ti5Cu17.9Ni14.6Al10 bulk metallic glass at temperatures below the glass transition temperature are presented. The long-time (t > (2–4) × 103?s) creep regularities were found to be the same as those known for ribbon metallic glasses, in spite of the pronounced difference in the production quenching rates. It is argued that creep behaviour of bulk metallic glass is determined by the rate of irreversible structural relaxation. The apparent activation energy spectrum reconstructed from isothermal creep measurements agrees well with that determined from linear heating creep data.  相似文献   

14.
The magnetizations of Zr76Ni24 metallic glass and hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses have been measured in the temperature range 10-300 K and magnetic fields up to 2 T for various dopant concentrations (x=0, 0.024, 0.043, 0.054). It is found that the samples are paramagnetic and magnetic susceptibility at room temperature, χ(300 K), shows a nonmonotonic behaviour upon hydrogenation. The values of χ(300 K) of the hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses are reduced with increase in hydrogen content up to x=0.043, whereas for x=0.054, an enhancement of χ(300 K) has been revealed. The magnetic susceptibility is weakly temperature dependent down to 110 K, below which an increase is observed. A shallow minimum exists between 90 and 120 K. The form and magnitude of the observed temperature dependence of the magnetic susceptibility are well accounted for by the sum of the quantum corrections to the magnetic susceptibility. Hydrogen reduces the electronic diffusion constant and influences strongly the quantum interference at defects, slowing down the spin diffusion and enhancing the magnetic susceptibility in the temperature range from 110 down to 10 K.  相似文献   

15.
X-ray absorption near edge structure spectroscopy has been used to investigate the electronic and atomic structure of (V2O5)x(Na2O)0.30(SiO2)0.70−x (x < 0.1) glasses obtained by melt-quench technique. The results show no sign of metallic clustering of V atoms, but mixed oxidation states (+4 and +5) of V and strong V3d–O2p hybridization in the glasses. Detailed analysis has revealed that the glass samples contain about 15% V4+ and 85% V5+ and the ligand-field splitting is about 1.6 eV.  相似文献   

16.
H. J. Schütt  D. Wienß  M. Doß 《Ionics》1995,1(3):257-261
Admittance spectra of the ion conducting glasses xNa2O(1−x)SiO2 and xK2O(1−x)SiO2,(x=0,1–0,3) have been studied on small signal conditions from room temperature to 713 K. Conductivity relaxation in the bulk and space charge relaxation due to drift and diffusion near the electrodes were found in separated parts of the frequency range 10−4–106 Hz. The data show Arrhenius behaviour for dc conductivity and conductivity relaxation. The determination of the charge carrier concentration is based on the analysis of the beginning of space charge relaxation. The free carrier concentration, n0, were evaluated to be of the order of 1023 m−3 at temperatures 400 – 700 K and show a weak dependence on composition. The dominant factor determining conductivity was mobility in these glasses. The strong temperature dependence of n0 below 400 K indicates changed conditions for the development of the space charge relaxation which are discussed. Paper presented at the 1st Euroconference on Solid State Ionics, Zakynthos, Greece, 11–18 Sept. 1994.  相似文献   

17.
Absorption and emission spectra for the 3H4↔(3F2, 3H6) transition of Pr3+ ions embedded in Ge–Sb–Se glasses turned out to change systematically upon the introduction of a small amout of Ga. Clear blueshift of the absorption peak wavelengths together with the decrease of absorption cross-section was evident in these glasses containing Ga. We believe that the Ga addition into the conventional covalent selenide glasses makes chemical bonds between rare earth atoms and Se atoms more ionic due to preferential location of the GaSe4 tetrahedra at the second coordination shell of a rare earth atom. Taking into consideration the hypersensitive nature of the Pr3+: 3H43F2 transition, the observed blueshift may manifest the enhanced ionicity of the chemical bonds between Pr and Se in the current Ga-containing glasses.  相似文献   

18.
测量了块体金属玻璃Zr46.75Ti8.25Cu7.5Ni10Be27.5在退火前后其电阻值随温度的变化,测量的温度范围为1.5—300K.样品在退火前后都发现有超导现象.零磁场下其超导转变温度Tc分别为1.84和3.76K.在5—300K温度范围内,原始样品具有负的电阻温度系数.如果取Zr, Ti, Cu, Ni及Be分别贡献出1.5, 1.5, 0.5, 0.5及两个传导 关键词: 块体金属玻璃 超导 电阻温度系数  相似文献   

19.
The optical absorption spectra of the glasses with composition xBi2O3·(30???x)R2O·70B2O3 (R?Li, Na, K) and xBi2O3·(70???x)B2O3·30Li2O (0?≤?x?≤?20) have been recorded in the wavelength range 350–650?nm. The glass samples were prepared by the normal melt–quench technique. The fundamental absorption edge for all the series of glasses is analyzed using the theory of Davis and Mott. The position of absorption edges and the values of optical band gap are dependent on the mol% of Bi2O3. The absorption in these glasses is associated with indirect transitions. The values of Urbach's energy and band tailing parameters are reported. The two photon absorption coefficient, β, in these glasses has also been estimated from the optical band gap and its value ranges from 1.3 to 11.6?cm/GW. The relationship between β and glass composition has also been discussed in terms of the electronic structure of the glass system.  相似文献   

20.
Abstract

Conductivity of chalcogenide glasses was measured as a function of temperature (290–340 K) and frequency (10?4–10?1 Hz). Frequency dependence of conductivity can be approximated by a power law G~ωs (S < 1). The relaxation maximum of dielectric losses was found. The dielectric constant ? decreases with frequency rise. The obtained results are discussed in terms of the defect structure model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号