首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics   总被引:7,自引:0,他引:7  
A new matrix-assisted laser-desorption/ionization time-of-flight/time-of-flight mass spectrometer with the novel "LIFT" technique (MALDI LIFT-TOF/TOF MS) is described. This instrument provides high sensitivity (attomole range) for peptide mass fingerprints (PMF). It is also possible to analyze fragment ions generated by any one of three different modes of dissociation: laser-induced dissociation (LID) and high-energy collision-induced dissociation (CID) as real MS/MS techniques and in-source decay in the reflector mode of the mass analyzer (reISD) as a pseudo-MS/MS technique. Fully automated operation including spot picking from 2D gels, in-gel digestion, sample preparation on MALDI plates with hydrophilic/hydrophobic spot profiles and spectrum acquisition/processing lead to an identification rate of 66% after the PMF was obtained. The workflow control software subsequently triggered automated acquisition of multiple MS/MS spectra. This information, combined with the PMF increased the identification rate to 77%, thus providing data that allowed protein modifications and sequence errors in the protein sequence database to be detected. The quality of the MS/MS data allowed for automated de novo sequencing and protein identification based on homology searching.  相似文献   

2.
A matrix‐assisted laser desorption/ionization time of flight/time of flight tandem mass spectrometer (MALDI TOF/TOF) has been used for high‐speed precursor/fragment ion transition image acquisition. High‐throughput analysis is facilitated by an Nd:YLF solid state laser capable of pulse repetition rates up to 5 kHz, a high digitizer acquisition rate (up to 50 pixels/s), and continuous laser raster sampling. MS/MS experiments are enabled through the use of a precision timed ion selector, second source acceleration, and a dedicated collision cell. Continuous raster sampling is shown here to facilitate rapid MS/MS ion image acquisition from thin tissue sections for the drug rifampicin and for a common kidney lipid, SM4s(d18:1/24:1). The ability to confirm the structural identity of an analyte as part of the MS/MS imaging experiment is an essential part of the analysis. Additionally, the increase in sensitivity and specificity afforded by an MS/MS approach is highly advantageous, especially when interrogating complex chemical environments such as those in biological tissues. Herein, we report continuous laser raster sampling TOF/TOF imaging methodologies which demonstrate 8 to 14‐fold increases in throughput compared with existing MS/MS instrumentation, an important advantage when imaging large areas on tissues. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes a method for the fast identification and composition of disulfide-bonded peptides. A unique fragmentation signature of inter-disulfide-bonded peptides is detected using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry and high-energy collision-induced dissociation (CID). This fragmentation pattern identifies peptides with an interconnected disulfide bond and provides information regarding the composition of the peptides involved in the pairing. The distinctive signature produced using CID is a triplet of ions resulting from the cleavage of the disulfide bond to produce dehydroalanine, cysteine or thiocysteine product ions. This method is not applicable to intra-peptide disulfide bonds, as the cleavage mechanism is not the same and a triplet pattern is not observed. This method has been successfully applied to identifying disulfide-bonded peptides in a number of control digestions, as well as study samples where disulfide bond networks were postulated and/or unknown.  相似文献   

4.
Huperzine A, a reversible acetylcholinesterase inhibitor for the treatment of Alzheimer disease (HupA), was studied using an (MALDI TOF MS) instrument in MALDI mode. The formation of a HupA dimmer in a vacuum was observed and several matrices were found that were able to inhibit its formation. The structures of the neutral and protonated form of the HupA molecule were calculated and optimized using a Hyperchem program. Detection limit using MALDI TOF MS in the model sample was 5.3 pg. MALDI TOF MS was also applied to the direct detection of the drug in medical preparations and in human serum. The limit of detection in plasma was 14.2 pg with a signal-to-noise ratio of 3:1. However, the sensitivity was not as high as it usually is in MALDI. Therefore, a new method for the derivatization of HupA was developed using fluorescent labelling with rhodamine B isothiocyanate (RBITC). A limit of detection using capillary electrophoresis laser induced fluorescence detection (CE-LIF) equal to 4 × 10−9 mol l−1 was reached.  相似文献   

5.
An extensive study of actinomycins was performed using matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐TOF MS). Actinomycins represent a well‐known family of peptidolactone chromopeptides with potent cytostatic and antibiotic properties. Using five well‐characterized streptomycete strains, we introduced MALDI‐TOF MS as an efficient technique for rapid in situ detection of actinomycins in surface extracts of cells picked from agar plates. By this procedure, actinomycin complexes can be investigated with high sensitivity and accuracy in a minimum of time. These studies were complemented by mass spectrometric investigation of actinomycins obtained from culture filtrate extracts and purified by high‐performance liquid chromatography to detect yet unknown actinomycin species. By feeding experiments, C‐demethyl‐actinomycins from Streptomyces chrysomallus and Streptomyces parvulus as well as hemi‐actinomycins from Streptomyces antibioticus lacking one of the two pentapeptide lactone rings were isolated and characterized as novel variants for structure–activity relationship studies. Structural characterization of the investigated actinomycins was performed by post source decay MALDI‐TOF MS. The specific features of the fragmentation patterns of the protonated and cationized forms of selected actinomycins were investigated in detail. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The detailed characterization of macromolecules plays an important role for synthetic chemists to define and specify the structure and properties of the successfully synthesized polymers. The search for new characterization techniques for polymers is essential for the continuation of the development of improved synthesis methods. The application of tandem mass spectrometry for the detailed characterization of synthetic polymers using the soft ionization techniques matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) and electrospray ionization mass spectrometry (ESI‐MS), which became the basic tools in proteomics, has greatly been increased in recent years and is summarized in this perspective. Examples of a variety of homopolymers, such as poly(methyl methacrylate), poly(ethylene glycol), as well as copolymers, e.g. copolyesters, are given. The advanced mass spectrometric techniques described in this review will presumably become one of the basic tools in polymer chemistry in the near future. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Various classes of polypeptide antibiotics, including blocked linear peptides (gramicidin D), side-chain-cyclized peptides (bacitracin, viomycin, capreomycin), side-chain-cyclized depsipeptides (virginiamycin S), real cyclic peptides (tyrocidin, gramcidin S) and side-chain-cyclized lipopeptides (polymyxin B and E, amfomycin), were investigated by low-energy collision induced dissociation (LE-CID) as well as high-energy CID (HE-CID). Ion trap (IT) based instruments with different desorption/ionization techniques such as electrospray ionization (ESI), atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) and vacuum MALDI (vMALDI) as well as a vMALDI-time-of-flight (TOF)/curved field-reflectron instrument fitted with a gas collision cell were used. For optimum comparability of data from different IT instruments, the CID conditions were standardized and only singly charged precursor ions were considered. Additionally, HE-CID data obtained from the TOF-based instrument were acquired and compared with LE-CID data from ITs. Major differences between trap-based and TOF-based CID data are that the latter data set lacks abundant additional loss of small neutrals (e.g. ammonia, water) but contains product ions down to the immonium-ion-type region, thereby allowing the detection of even single amino-acid (even unusual amino acids) substitutions. For several polypeptide antibiotics, mass spectrometric as well as tandem mass spectrometric data are shown and discussed for the first time, and some yet undescribed minor components are also reported. De novo sequencing of unusually linked minor components of (e.g. cyclic) polypeptides is practically impossible without knowledge of the exact structure and fragmentation behavior of the major components. Finally, the described standardized CID condition constitutes a basic prerequisite for creating a searchable, annotated MS(n)-database of bioactive compounds. The applied desorption/ionization techniques showed no significant influence on the type of product ions (neglecting relative abundances of product ions formed) observed, and therefore the type of analyzer connected with the CID process mainly determines the type of fragment ions.  相似文献   

8.
9.
Increased oxidation of low density lipoprotein (LDL) is characteristic of atherosclerosis. In this frame, high density lipoproteins (HDL) play an important role, being able to remove lipid peroxides (LPOs) and cholesterol from oxidized LDL, so exhibiting a protective role against atherosclerosis. A wide range of reactive compounds lead to the oxidation of methionine (Met) residues with the formation of methionine sulphoxide (MetO) in apolipoprotein A‐I (ApoA‐I). Consequently, the determination of MetO level can give both an evaluation of oxidative stress and the reduced capability of ApoA‐I in LPOs and cholesterol transport. For these reasons, the development of analytical methods able to determine the MetO level is surely of interest, and we report here the results obtained by MALDI mass spectrometry. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
We present herein an efficient mass spectrometric method for the localization of the glycation sites of a model neoglycoconjugate vaccine formed by a construct of the tetrasaccharide side chain of the Bacillus anthracis exosporium and the protein carrier bovine serum albumin. The glycoconjugate was digested with both trypsin and GluC V8 endoproteinases, and the digests were then analyzed by MALDI-TOF/TOF-CID-MS/MS and nano-LC-ESI-QqTOF-CID-MS/MS. The sequences of the unknown peptides analyzed by MALDI-TOF/TOF-CID-MS/MS, following digestion with the GluC V8 endoproteinase, allowed us to recognize three glycopeptides whose glycation occupancies were, respectively, on Lys 235, Lys 420, and Lys 498. Similarly, the same analysis was performed on the tryptic digests, which permitted us to recognize two glycation sites on Lys 100 and Lys 374. In addition, we have also used LC-ESI-QqTOF-CID-MS/MS analysis for the identification of the tryptic digests. However, this analysis identified a higher number of glycopeptides than would be expected from a glycoconjugate composed of a carbohydrate-protein ratio of 5.4:1, which would have resulted in glycation occupancies of 18 specific sites. This discrepancy was due to the large number of glycoforms formed during the synthetic carbohydrate-spacer-carrier protein conjugation. Likewise, the LC-ESI-QqTOF-MS/MS analysis of the GluC V8 digest also identified 17 different glycation sites on the synthetic glycoconjugate.  相似文献   

11.
The specific matrix used in matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) can have an effect on the molecules ionized from a tissue sample. The sensitivity for distinct classes of biomolecules can vary when employing different MALDI matrices. Here, we compare the intensities of various lipid subclasses measured by Fourier transform ion cyclotron resonance (FT‐ICR) IMS of murine liver tissue when using 9‐aminoacridine (9AA), 5‐chloro‐2‐mercaptobenzothiazole (CMBT), 1,5‐diaminonaphthalene (DAN), 2,5‐Dihydroxyacetophenone (DHA), and 2,5‐dihydroxybenzoic acid (DHB). Principal component analysis and receiver operating characteristic curve analysis revealed significant matrix effects on the relative signal intensities observed for different lipid subclasses and adducts. Comparison of spectral profiles and quantitative assessment of the number and intensity of species from each lipid subclass showed that each matrix produces unique lipid signals. In positive ion mode, matrix application methods played a role in the MALDI analysis for different cationic species. Comparisons of different methods for the application of DHA showed a significant increase in the intensity of sodiated and potassiated analytes when using an aerosol sprayer. In negative ion mode, lipid profiles generated using DAN were significantly different than all other matrices tested. This difference was found to be driven by modification of phosphatidylcholines during ionization that enables them to be detected in negative ion mode. These modified phosphatidylcholines are isomeric with common phosphatidylethanolamines confounding MALDI IMS analysis when using DAN. These results show an experimental basis of MALDI analyses when analyzing lipids from tissue and allow for more informed selection of MALDI matrices when performing lipid IMS experiments.  相似文献   

12.
Two cysteine‐specific modifiers we reported previously, N‐ethyl maleimide (NEM) and iodoacetanilide (IAA), have been applied to the labeling of cysteine residues of peptides for the purpose of examining the enhancement of ionization efficiencies in combination with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI TOF MS). The peak intensities of the peptides as a result of modification with these modifiers were compared with the peak intensities of peptides modified with a commercially available cysteine‐specific modifier, iodoacetamide (IA). Our experiments show significant enhancement in the peak intensities of three cysteine‐containing synthetic peptides modified with IAA compared to those modified with IA. The results showed a 4.5–6‐fold increase as a result of modification with IAA compared to modification with IA. Furthermore, it was found that IAA modification also significantly enhanced the peak intensities of many peptides of a commercially available proteins, bovine serum albumin (BSA), compared to those modified with IA. This significant enhancement helped identify a greater number of peptides of these proteins, leading to a higher sequence coverage with greater confidence scores in identification of proteins with the use of IAA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI TOF MS), analyte signals can be substantially suppressed by other compounds in the sample. In this technical note, we describe a modified thin‐layer sample preparation method that significantly reduces the analyte suppression effect (ASE). In our method, analytes are deposited on top of the surface of matrix preloaded on the MALDI plate. To prevent embedding of analyte into the matrix crystals, the sample solution were prepared without matrix and efforts were taken not to re‐dissolve the preloaded matrix. The results with model mixtures of peptides, synthetic polymers and lipids show that detection of analyte ions, which were completely suppressed using the conventional dried‐droplet method, could be effectively recovered by using our method. Our findings suggest that the incorporation of analytes in the matrix crystals has an important contributory effect on ASE. By reducing ASE, our method should be useful for the direct MALDI MS analysis of multicomponent mixtures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Donkey's milk (DM), representing a safe and alternative food in both IgE‐mediated and non‐IgE‐mediated cow's milk protein allergy, can be categorized as precious pharma‐food. Moreover, an economically relevant interest for the use of DM in cosmetology is also developing. The detection of adulterations and contaminations of DM is a matter of fundamental importance from both an economic and allergenic standpoint, and, to this aim, fast and efficient analytical approaches to assess the authenticity of this precious nutrient are desirable. Here, a rapid matrix‐assisted laser desorption/ionization‐time‐of‐flight mass spectrometry (MALDI‐TOF MS)‐based method aimed to the detection of bovine or caprine milk in raw DM is reported. The presence of the extraneous milks was revealed by monitoring the protein profiles of the most abundant whey proteins, α‐lactalbumin (α‐LA) and β‐lactoglobulin, used as molecular markers. The possibility of obtaining a quantitative analysis of the level of cow or goat milk in DM based on the MALDI‐TOF peak areas of α‐LAs was also explored. The results showed that the experimental quantitative values were in good agreement with the real composition of each mixture. As pretreatment of the milk samples is not required, and owing to the speed and the high sensitivity of MALDI‐MS, the protocol here reported could represent a reliable method for routine analyses aimed to assess the absence of contamination in raw fresh DM samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
We present the MALDI‐TOF/TOF‐MS analyses of various hapten–bovine serum albumin (BSA) neoglycoconjugates obtained by squaric acid chemistry coupling of the spacer‐equipped, terminal monosaccharide of the O‐specific polysaccharide of Vibrio cholerae O1, serotype Ogawa, to BSA. These analyses allowed not only to calculate the molecular masses of the hapten–BSA neoglycoconjugates with different hapten–BSA ratios (4.3, 6.6 and 13.2) but, more importantly, also to localize the covalent linkages (conjugation sites) between the hapten and the carrier protein. Determination of the site of glycation was based on comparison of the MALDI‐TOF/TOF‐MS analysis of the peptides resulting from the digestion of BSA with similar data resulting from the digestion of BSA glycoconjugates, followed by sequencing by MALDI‐TOF/TOF‐MS/MS of the glycated peptides. The product‐ion scans of the protonated molecules were carried out with a MALDI‐TOF/TOF‐MS/MS tandem mass spectrometer equipped with a high‐collision energy cell. The high‐energy collision‐induced dissociation (CID) spectra afforded product ions formed by fragmentation of the carbohydrate hapten and amino acid sequences conjugated with fragments of the carbohydrate hapten. We were able to identify three conjugation sites on lysine residues (Lys235, Lys437 and Lys455). It was shown that these lysine residues are very reactive and bind lysine specific reagents. We presume that these Lys residues belong to those that are considered to be sterically more accessible on the surface of the tridimensional structure. The identification of the y‐series product ions was very useful for the sequencing of various peptides. The series of a‐ and b‐product ions confirmed the sequence of the conjugated peptides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
An analytical workflow involving high resolution mass analysis, collision‐induced dissociation and ion mobility was implemented to structurally characterize polymeric by‐products detected in lieu of intact species when performing matrix‐assisted laser desorption/ionization (MALDI) of polystyrenes with fragile end groups. Studied samples were prepared by atom transfer radical polymerization, reversible addition–fragmentation transfer polymerization and nitroxide‐mediated polymerization. Spectral resolution enabled by orthogonal injection of MALDI ions into a reflectron time‐of‐flight mass analyzer allowed a thorough inventory of species, including some with the same nominal m/z value but different elemental composition. Individual end‐group mass determination was achieved in MS/MS experiments, implementing an additional separative dimension based on ion mobility prior to CID to assist precursor ion selection in case of interferences. Besides validating commonly reported polystyrene chains terminated with either endo‐ or exo‐double bond, this multidimensional approach permitted to show that initiating moiety could also be affected by the MALDI process. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3388–3397  相似文献   

17.
The molar mass determination of block copolymers, in particular amphiphilic block copolymers, has been challenging with chromatographic techniques. Therefore, methoxy poly(ethylene glycol)‐b‐poly(styrene) (mPEG‐b‐PS) was synthesized by atom transfer radical polymerization (ATRP) and characterized in detail not only by conventional chromatographic techniques, such as size exclusion chromatography (SEC), but also by matrix‐assisted laser/desorption ionization tandem mass spectrometry (MALDI‐TOF MS/MS). As expected, different molar mass values were obtained in the SEC measurements depending on the calibration standards (either PEG or PS). In contrast, MALDI‐TOF MS/MS analysis allowed the molar mass determination of each block, by the scission of the weakest point between the PEG and PS block. Thus, fragments of the individual blocks could be obtained. The PEG block showed a depolymerization reaction, while for the PS block fragments were obtained in the monomeric, dimeric, and trimeric regions as a result of multiple chain scissions. The block length of PEG and PS could be calculated from the fragments recorded in the MALDI‐TOF MS/MS spectrum. Furthermore, the assignment of the substructures of the individual blocks acquired by MALDI‐TOF MS/MS was accomplished with the help of the fragments that were obtained from the corresponding homopolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Paenibacillus polymyxa are rhizobacteria with a high potential to produce natural compounds of biotechnological and medical interest. Main products of P . polymyxa are fusaricidins, a large family of antifungal lipopeptides with a 15‐guanidino‐3‐hydroxypentadecanoic acid (GHPD) as fatty acid side chain. We use the P . polymyxa strain M‐1 as a model organism for the exploration of the biosynthetic potential of these rhizobacteria. Using matrix‐assisted laser‐desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) about 40 new fusaricidins were detected which were fractionated by reversed‐phase (rp) HPLC. Their structure was determined by MALDI‐LIFT‐TOF/TOF fragment analysis. The dominant fragment in the product ion spectra of fusaricidins appeared at m /z 256.3, 284.3 and 312.4, respectively, indicating variations in their fatty acid part. Two new subfamilies of fusaricidins were introduced which contain guanidino‐3‐hydroxyhepta‐ and nonadecanoic acid as fatty acid constituents. Apparently, the end‐standing guanidine group is not modified as shown by direct infusion nano‐electrospray ionization mass spectrometry (nano‐ESI MS). The results of this study suggest that advanced mass spectrometry is the method of choice for investigating natural compounds of unusual diversity, like fusaricidins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A comparison is made between two high resolution, surface-based, mass spectrometric methods: time-of-flight secondary ion mass spectrometry (TOF-SIMS) and matrix-assisted laser desorption/ionisation mass spectrometry (MALDI TOF-MS) in indication of abietic and gibberellic acids molecular profiles on different chromatographic thin layers. The analytes were applied to silica gel chromatographic thin layers with SIMS on-line interfacing channel, monolithic silica gel ultra-thin layers, and thin layers specifically designed for direct Raman spectroscopic analysis. Two MALDI matrices were used in this research: ferulic acid and 2,5-dihydroxybenzoic acid. The silica gel SIMS-interfacing channel strongly supported formation of numerous different MALDI MS fragments with abietic and gibberellic acids, and ferulic acid matrix. The most intense fragments belonged to [M-OH](+) and [M](+) ions from ferulic acid. Intense conjugates were detected with gibberellic acid. The MALDI MS spectrum from the monolithic silica gel surface showed very low analyte signal intensity and it was not possible to obtain MALDI spectra from a Raman spectroscopy treated chromatographic layer. The MALDI TOF MS gibberellic acid fragmentation profile was shielded by the matrix used and was accompanied by poor analyte identification. The most useful TOF-SIMS analytical signal response was obtained from analytes separated on monolithic silica gel and a SIMS-interfacing modified silica gel surface. New horizons with nanostructured surfaces call for high resolution MS methods (which cannot readily be miniaturised like many optical and electrochemical methods) to be integrated in chip and nanoscale detection systems.  相似文献   

20.
Analysis and confirmation of monolayer film thickness on metal oxide surfaces has proven to be challenging. XPS and AFM have been used to investigate the monolayer formation. However, these techniques are difficult to access and/or determine the composition of the organic molecules on the surfaces. Here we demonstrate the ability of MALDI‐TOF to characterize long alkyl chain phosphonic acid molecules in thin films on titanium, iron and stainless steel. These systems are known to be stable, strongly adhered films. The thin films were characterized by IR, AFM, contact angle measurements and the results were confirmed by MALDI‐TOF. Moreover, the MALDI‐TOF was used to differentiate between mono‐ and multilayers on planar surfaces. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号