首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Neural stem cells (NSCs) are a promising source for cell replacement therapies for neurological diseases. Growing evidence suggests an important role of cerebrospinal fluid (CSF) not only on neuroectodermal cells during brain development but also on the survival, proliferation and fate specification of NSCs in the adult brain. Existing in vitro studies focused on embryonic cell lines and embryonic CSF. We therefore studied the effects of adult human leptomeningeal CSF on the behaviour of adult human NSCs (ahNSCs).  相似文献   

2.

Background

We have developed a culture system for the efficient and directed differentiation of human embryonic stem cells (HESCs) to neural precursors and neurons.HESC were maintained by manual passaging and were differentiated to a morphologically distinct OCT-4+/SSEA-4- monolayer cell type prior to the derivation of embryoid bodies. Embryoid bodies were grown in suspension in serum free conditions, in the presence of 50% conditioned medium from the human hepatocarcinoma cell line HepG2 (MedII).

Results

A neural precursor population was observed within HESC derived serum free embryoid bodies cultured in MedII conditioned medium, around 7–10 days after derivation. The neural precursors were organized into rosettes comprised of a central cavity surrounded by ring of cells, 4 to 8 cells in width. The central cells within rosettes were proliferating, as indicated by the presence of condensed mitotic chromosomes and by phosphoHistone H3 immunostaining. When plated and maintained in adherent culture, the rosettes of neural precursors were surrounded by large interwoven networks of neurites. Immunostaining demonstrated the expression of nestin in rosettes and associated non-neuronal cell types, and a radial expression of Map-2 in rosettes. Differentiated neurons expressed the markers Map-2 and Neurofilament H, and a subpopulation of the neurons expressed tyrosine hydroxylase, a marker for dopaminergic neurons.

Conclusion

This novel directed differentiation approach led to the efficient derivation of neuronal cultures from HESCs, including the differentiation of tyrosine hydroxylase expressing neurons. HESC were morphologically differentiated to a monolayer OCT-4+ cell type, which was used to derive embryoid bodies directly into serum free conditions. Exposure to the MedII conditioned medium enhanced the derivation of neural precursors, the first example of the effect of this conditioned medium on HESC.
  相似文献   

3.

Background  

Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-α) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation.  相似文献   

4.
5.

Background  

During developmental and adult neurogenesis, doublecortin is an early neuronal marker expressed when neural stem cells assume a neuronal cell fate. To understand mechanisms involved in early processes of neuronal fate decision, we investigated cell lines for their capacity to induce expression of doublecortin upon neuronal differentiation and develop in vitro reporter models using doublecortin promoter sequences.  相似文献   

6.

Background  

Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord.  相似文献   

7.

Background  

The recently discovered adult neural stem cells, which maintain continuous generation of new neuronal and glial cells throughout adulthood, are a promising and expandable source of cells for use in cell replacement therapies within the central nervous system. These cells could either be induced to proliferate and differentiate endogenously, or expanded and differentiated in culture before being transplanted into the damaged site of the brain. In order to achieve these goals effective strategies to isolate, expand and differentiate neural stem cells into the desired specific phenotypes must be developed. However, little is known as yet about the factors and mechanisms influencing these processes. It has recently been reported that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neural stem cell proliferation both in vivo and in vitro.  相似文献   

8.
We employed several complementary cell image analytical methods including ImageStream system (ISS analysis) and molecular approaches to identify and purify from adult murine organs a population of very small embryonic like stem cells (VSELs). These cells are (i) small in size, (ii) possess high cytoplasmic/nuclear ratio, (iii) contain primitive unorganized euchromatin, (iv) in mice are found among Sca-1+ Lin? CD45? cells and in humans among CD133+ CXCR4+ CD34+ Lin? CD45? cells and (v) express embryonic markers such as Oct-4 protein in nuclei and SSEA antigens on the surface. In mice the highest number of these cells resides in brain, kidney, pancreas and bone marrow. Data from our laboratory indicate that VSELs are most likely a population of germ line/epiblast-derived pluripotent stem cells, that is deposited during organogenesis in developing tissues as a source of tissue committed stem cells and that the number of these cells decreases with the age. We believe that VSELs could be harnessed as a source of pluripotent stem cells for regenerative medicine.  相似文献   

9.

Background  

Human neural stem cells (hNSC) have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. In vivo, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth.  相似文献   

10.

Background  

Neural differentiation of embryonic stem (ES) cells is usually achieved by induction of ectoderm in embryoid bodies followed by the enrichment of neuronal progenitors using a variety of factors. Obtaining reproducible percentages of neural cells is difficult and the methods are time consuming.  相似文献   

11.
The magnetic nanoparticles with a diameter of about 60 nm were synthesized by coprecipitation from ferrous and ferric iron solutions and coated with silica. Then the nanoparticles were modified with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPS) in order to immobilize anti-CD34+ monoclonal antibodies to the surface of modified magnetic particles. The results of transmission electron microscope (TEM) and Fourier transformed infrared (FT-IR) indicated that the nanoparticles were successfully prepared. Scanning electron microscope (SEM) photo confirmed that the mouse CD34+ cells (cells expressing CD34) were separated by the immunomagnetic nanoparticles. The viability of the separated cells was studied by hematopoietic colony-forming assay, the result of which showed that the target cells still had an ability of proliferation and differentiation. The application of the separated CD34+ cells was in testing the pharmacological effect of three samples isolated from enzyme-digested traditional Chinese medicine Colla corii asini.  相似文献   

12.
Mesenchymal stem cells (MSCs) were used widely as seed cells in tissue engineering blood vessel construction. However, the biological characteristics difference of different generation MSCs in vitro culture is unknown, which laid a foundation for appropriate generation seeded cells selection for tissue engineering blood vessel construction. In this report, MSCs were isolated from SD rat bone marrow and identified by flow cytometry; cell growth curve test, cell surface antigen expression rate detection, cryopreservation resuscitation rate test, CD31 expression rate test, cell cycle analysis, and adhesion difference on vascular scaffold test were performed. The research results indicated that the MSCs shape was spindle and uniform with vigorous growth. CD105 and CD90 factor expression rate reached 82.5 and 84.9%, respectively, and the expression rate of CD45 was only 7.3%. The proliferation capacity of the fourth generation MSCs were more exuberant, with proliferation index as 20.3%; the cell proliferation index of the eighth generation decreased to only 9.1%. The cryopreservation resuscitation rate of the second generation and fourth generation MSCs were both higher than 80%, and the cryopreservation resuscitation rate of the eighth generation MSCs was only about 60%. After the induction for 5 days, MSCs had weak CD31 expression, and with the prolonged induction time, expression increased. All generation MSCs expressed CD31 after being induced for 10 days; however, the CD31 positive expression rate of the second generation, fourth generation, and sixth generation MSCs had significant difference with the eighth generation MSCs. Adhesion rate of MSCs before sixth generation was around 40%, but the adhesion rate of eighth generation MSCs was only about 27%. In all, biological characteristics of different generation MSCs existed certain differences, and especially the eighth generation MSCs aged seriously, whose cell activity decreased significantly. The researchers believed that the MSCs before the sixth generation can maintain excellent properties of MSCs, and can be used as seed cells for vascular tissue engineering.  相似文献   

13.
The silica-coated superparamagnetic nanoparticles with the uniform diameter of about 60 nm were synthesized by reverse microemulsions method. And the magnetic nanoparticles were modified with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPS). The immunomagnetic nanoparticles were then successfully prepared by covalently immobilizing anti-CD34+ monoclonal antibodies to the surface of amino silane modified magnetic particles. The cell separation results showed that the synthesized immunomagnetic nanoparticles could rapidly and conveniently separate the CD34+ cells with high efficiency and specificity than normal ones. The surface morphology of separated target cells was examined by scanning electron microscope (SEM). Atomic force microscope (AFM) also characterized the magnetic materials on the surface of the separated target cells for the first time, which further confirmed that the target cells were separated by the immunomagnetic nanoparticles. The viability of the separated cells was studied by culturing method and Beckman Vi-cell viability analyst. Therefore, our experiments provided a new, direct, rapid mode to separate target cells.  相似文献   

14.
The growth of matter perturbations in the f(R) model proposed by Starobinsky is studied in this paper. Three different parametric forms of the growth index are considered respectively, and constraints on the model are obtained at both the 1σ and 2σ confidence levels, by using the current observational data for the growth factor. It is found, for all the three parametric forms of the growth index examined, that the Starobinsky model is consistent with the observations only at the 2σ confidence level.  相似文献   

15.
16.
The chromosome study of five species of the family Elateridae, belonging to the subfamilies Agrypninae and Elaterinae, and the analysis of the cytogenetic data previously recorded for this family permitted the establishment of the main strategies of karyotypic differentiation that has occurred in the elaterids. In Agrypninae, the three species studied (Conoderus fuscofasciatus, Conoderus rufidens, and Conoderus sp.) showed the male karyotype 2n=16+X0. This karyotypic uniformity detected in these Conoderus species has also been shared with other species of the same genus, differing considerably from chromosomal heterogeneity verified in the subfamily Agrypninae. The use of the C-banding technique in C. fuscofasciatus and Conoderus sp. revealed constitutive heterochromatin in the pericentromeric region of the majority of the chromosomes. In C. fuscofasciatus, additional constitutive heterochromatin were also observed in the long arm terminal region of almost all chromosomes. Among the representatives of Elaterinae, the karyotype 2n=18+Xy(p) of Pomachilius sp.2 was similar to that verified in the majority of the Coleoptera species, contrasting with the chromosomal formula 2n=18+X0 detected in Cardiorhinus rufilateris, which is most common in the species of Elaterinae. In the majority of the elaterids, the chromosomal differentiation has frequently been driven by reduction of the diploid number; but, among the four cytogenetically examined subfamilies, there are some differences in relation to the trends of karyotypic evolution.  相似文献   

17.
ABSTRACT: BACKGROUND: Cell therapy is a potential therapeutic approach for several neurodegenetative disease, including Huntington Disease (HD). To evaluate the putative efficacy of cell therapy in HD, most studies have used excitotoxic animal models with only a few studies having been conducted in genetic animal models. Genetically modified animals should provide a more accurate representation of human HD, as they emulate the genetic basis of its etiology. RESULTS: In this study, we aimed to assess the therapeutic potential of a human striatal neural stem cell line (STROC05) implanted in the R6/2 transgenic mouse model of HD. As DARPP-32 GABAergic output neurons are predominately lost in HD, STROC05 cells were also predifferentiated using purmorphamine, a hedgehog agonist, to yield a greater number of DARPP-32 cells. A bilateral injection of 4.5x105 cells of either undifferentiated or predifferentiated DARPP-32 cells, however, did not affect outcome compared to a vehicle control injection. Both survival and neuronal differentiation remained poor with a mean of only 161 and 81 cells surviving in the undifferentiated and differentiated conditions respectively. Only a few cells expressed the neuronal marker beta-III-tubulin. CONCLUSIONS: Although the rapid brain atrophy and short life-span of the R6/2 model constitute adverse conditions to detect potentially delayed treatment effects, significant technical hurdles, such as poor cell survival and differentiation, were also sub-optimal. Further consideration of these aspects is therefore needed in more enduring transgenic HD models to provide a definite assessment of this cell line's therapeutic relevance. However, a combination of treatments is likely needed to affect outcome in transgenic models of HD.  相似文献   

18.
Relatively few studies of fully hydrated live or fixed cultured animal cells viewed by environmental scanning electron microscopy (ESEM) have been published. In some cases there may have been some drying out of the cells. In this study the interface between water and cells is imaged as water is carefully evaporated to expose cells. Technical difficulties associated with the process, including inadvertent rewetting of cells are described. Suggestions are made for optimising operating parameters for viewing fully hydrated cultured cells by ESEM. The prospects for viewing live cultured cells are discussed.  相似文献   

19.

Objective

Three different kinds of transfection reagents were used to mediate the transfection of gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) into human umbilical-cord-derived mesenchymal stem cells (hUCMSCs). The efficacy of different transfection reagents and the feasibility of NMR tracer in vitro of magnetized stem cells were estimated.

Methods

After purification by tissue explants adherent method, the biological characteristics of hUCMSCs in vitro were identified by subculture and amplification. Calcium phosphate, Effectene and liposome2000 were used to transfect Gd-DTPA-labeled hUCMSCs respectively, and cell counting was used to mediate the transfection of Gd-DTPA into hUCMSCs, which were then induced to lipoblast and osteoblast in vitro. The determination of the transfection activities of the transfection reagents was conducted by measuring the magnetic resonance imaging (MRI) signal intensity of the Gd-DTPA-labeled cells and the concentration of gadolinium ion in the cells. Furthermore, the relationship between the signal intensity of Gd-DTPA-labeled hUCMSCsMRI, cell subculture and generations was studied.

Results

Primary cells were obtained by tissue explants adherent for two weeks. The cells displayed a long spindle form and grew in swirl. After two passage generations, the cellular morphology became more homogeneous. The result detected by the flow cytometer showed that CD29C, D44, CD90, and CD105 were highly expressed, while no CD45, CD40, and HLA-DR expression was detected in the third generation cells. Directional induction in vitro caused the differentiation into lipoblast and osteoblast. After transfected by calcium phosphate, Effectene and liposome 2000, the signal intensity of stem cells was 2281.2 ± 118.8, 2031.9 ± 59.7 and 1887.4 ± 40.8 measured by MRI. Differences between these three groups were statistically significant (P < 0.05). The concentrations of gadolinium ion in three groups of stem cells were 0.178 ± 0.009 mg/L, 0.158 ± 0.003 mg/L and 0.120 ± 0.002 mg/L respectively, examined by inductively coupled plasma atomic emission spectrometry. No significant differences were found among these three groups (P < 0.05). The proliferation and differentiation abilities of the Gd-DTPA-labeled stem cells were not affected. A minimum 5 × 104 Gd-DTPA-labeled stem cells could be traced with MRI in vitro and presented in high signal. The trace duration time in vitro was about 12 days.

Conclusions

Tissue explants adherent method can be availably applied to purify hUCMSCs. The Effectene method was proved to have the best transfection effect. The proliferation ability and differentiation potency of Gd-DTPA-labeled hUCMSCs were not affected, and the NMR of labeled stem cells in vitro was proved to be feasible.  相似文献   

20.

Background  

Glutamate, a major excitatory amino acid neurotransmitter, causes apoptotic neuronal cell death at high concentrations. Our previous studies have shown that depending on the neuronal cell type, glutamate-induced apoptotic cell death was associated with regulation of genes such as Bcl-2, Bax, and/or caspase-3 and mitochondrial cytochrome c. To further delineate the intracellular mechanisms, we have investigated the role of calpain, an important calcium-dependent protease thought to be involved in apoptosis along with mitochondrial apoptosis inducing factor (AIF) and caspase-3 in primary cortical cells and a mouse hippocampal cell line HT22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号