首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An iterative method for the radiative transfer equation solution is suggested for the scattering hydrometeors. The method allows to find the layer scattering indicatrix. The method is shown to be more general as compared with the four-flux theory or the perturbation method and differs strongly from these ones because even in the case of the first iteration it gives the results which are very close to ones obtained by numerical methods for all rain scattering angles.  相似文献   

2.
Many numerical models use periodic boundary conditions in solving the radiative transfer through heterogeneous media specified over a fixed domain. A reciprocity principle applicable to solutions from these models is derived for the common situation of a scattering and absorbing heterogeneous medium that is illuminated over the entire domain from a single direction. The derived reciprocity principle states that the domain-averaged bidirectional reflectance distribution function remains invariant when incoming and outgoing directions are interchanged, regardless of the heterogeneity of the medium and the size of the domain. This reciprocity principle provides a simple and useful benchmark test for radiative transfer models that use periodic boundary conditions.  相似文献   

3.
Three-dimensional steady-state radiative integral transfer equations (RITEs) for a cubic absorbing and isotropically scattering homogeneous medium are solved using the method of “subtraction of singularity”. Surface integrals and volume integrals are carried out analytically to eliminate singularities, to assure highly accurate solutions, and to reduce the computational time. The resulting system of linear equations for the incident energy is solved iteratively. Six benchmark problems for cold participating media subjected to various combinations of externally uniform/non-uniform diffuse radiation loads are considered. The solutions for the incident energy and the net heat flux components are given in tabular form for scattering albedos of ω=0, 0.5 and 1.  相似文献   

4.
The authors developed a numerical method of the boundary-value problem solution in the vectorial radiative transfer theory applicable to the turbid media with an arbitrary three-dimensional geometry. The method is based on the solution representation as the sum of an anisotropic part that contains all the singularities of the exact solution and a smooth regular part. The regular part of the solution could be found numerically by the finite element method that enables to extend the approach to the arbitrary medium geometry. The anisotropic part of the solution is determined analytically by the special form of the small-angle approximation. The method development is performed by the examples of the boundary-value problems for the plane unidirectional and point isotropic sources in a turbid medium slab.  相似文献   

5.
A method is described for solving the monochromatic radiative transfer equation for the case of inhomogeneous, plane-parallel scattering and absorbing atmospheres illuminated by external as well as internal sources. The solution procedure, which is based on a series expansion of the radiation intensity with respect to the angular and spatial coordinates, is analytical in nature and can thus be implemented on small computing facilites. Test calculations were performed for isotropic and Rayleigh scattering atmospheres of various optical thicknesses and single scattering albedos. The results coincide well with data from other methods given in the literature.  相似文献   

6.
A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: (1) clear-sky, (2) single-layered ice or water cloud, and (3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3-1179.5 cm−1) and the short-to-medium wave (SMW) band (1180.1-2228.9 cm−1). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F−D). The BTD (F−D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD (F−D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model.  相似文献   

7.
A spectral element method (SEM) is developed to solve polarized radiative transfer in multidimensional participating medium. The angular discretization is based on the discrete-ordinates approach, and the spatial discretization is conducted by spectral element approach. Chebyshev polynomial is used to build basis function on each element. Four various test problems are taken as examples to verify the performance of the SEM. The effectiveness of the SEM is demonstrated. The h and the p convergence characteristics of the SEM are studied. The convergence rate of p-refinement follows the exponential decay trend and is superior to that of h-refinement. The accuracy and efficiency of the higher order approximation in the SEM is well demonstrated for the solution of the VRTE. The predicted angular distribution of brightness temperature and Stokes vector by the SEM agree very well with the benchmark solutions in references. Numerical results show that the SEM is accurate, flexible and effective to solve multidimensional polarized radiative transfer problems.  相似文献   

8.
An efficient and robust method based on the complex-variable-differentiation method (CVDM) is proposed to reconstruct the distribution of optical parameters in two-dimensional participating media. An upwind-difference discrete-ordinate formulation of the time-domain radiative transfer equation is well established and used as forward model. The regularization term using generalized Gaussian Markov random field model is added in the objective function to overcome the ill-posed nature of the radiative inverse problem. The multi-start conjugate gradient method was utilized to accelerate the convergence speed of the inverse procedure. To obtain an accurate result and avoid the cumbersome formula of adjoint differentiation model, the CVDM was employed to calculate the gradient of objective function with respect to the optical parameters. All the simulation results show that the CVDM is efficient and robust for the reconstruction of optical parameters.  相似文献   

9.
The discrete-ordinates method is used to solve uncoupled multi-wavelength radiative transfer problems in multi-region plane-parallel media. We present a generalized analytical discrete-ordinates formulation that includes internal sources, as well as reflecting and emitting boundaries, incident distribution of radiation on each surface and a beam incident on one surface, as boundary conditions. Four problems were selected to show the results that can be generated through this formulation.  相似文献   

10.
In the present work four different spatial numerical schemes have been developed with the aim of reducing the false-scattering of the numerical solutions obtained with the discrete ordinates (DOM) and the finite volume (FVM) methods. These schemes have been designed specifically for unstructured meshes by means of the extrapolation of nodal values of intensity on the studied radiative direction. The schemes have been tested and compared in several 3D benchmark test cases using both structured orthogonal and unstructured grids.  相似文献   

11.
In this paper we solve the inversion problem of the radiative transfer process in the isotropic plane-parallel atmosphere by iterative integrations of the Milne integral equation. As a result, we obtain the scattering function in the form of a cubic polynomial in optical thickness. The author has already solved the same problem by iterative integrations of Chandrasekhar's integral equation. In the Milne integral equation, both the cosines of the viewing angles and the optical thickness are integral variables, while in Chandrasekhar's integral equation the cosines of the viewing angles are variables but the optical thickness is not. We derive several series of exponential-like functions as intermediate derivations. Their convergences are evaluated by the author's previous work in the solution of Chandrasekhar's integral equation. The truncated scattering function up to the third order in optical thickness thus obtained is identical to that obtained from Chandrasekhar's integral equation, though their apparent forms are different. Chandrasekhar pointed out that the solution of Chandrasekhar's integral equation does not have a uniqueness of solution. The Milne equation, in contrast, has been proven to have a unique solution. We discuss the uniqueness of the solution by these two methods.  相似文献   

12.
A simple improvement of a previous direct method of solution of the spherical harmonics approximation to the radiative transfer equation results in higher computational efficiencies by factors of 2–4; these higher efficiencies are particularly important to shorten the lengthy computations required in optically thick nonhomogeneous atmospheres.  相似文献   

13.
Fast radiative transfer codes have been developed for simulating the outgoing radiance (and corresponding brightness temperature) to be measured by the Infrared Imaging Radiometer (IIR) of the space Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission. Two simple codes (FASRAD and FASAA), for which scattering is neglected, as well as an accurate code (FASDOM), accounting for scattering and absorption with the Discrete Ordinate Method (DOM), are presented. Their accuracy has been estimated with a reference code including a line-by-line model and the DOM. Simulations have shown that the accuracy is generally better than 0.3 K on the brightness temperature for clear or cloudy atmospheres. This accuracy agrees with the expected one of future IIR measurements. In addition, the impact of scattering on the brightness temperature has been evaluated for semi-transparent liquid clouds in the IIR spectral range. Especially, simulations have shown that cloud microphysics retrieval might be possible with the Brightness Temperature Difference (BTD) between two IIR bands, using the couple of wavelengths (8.7-) or (10.6-). However, scattering strongly influences the radiation for shorter wavelengths. The error on the BTD with (8.7-) can reach 4 K when scattering is neglected, leading to large uncertainties in the retrieval of droplet effective radius.  相似文献   

14.
A comparison of discretization schemes required to evaluate the radiation intensity at the cell faces of a control volume in differential solution methods of the radiative transfer equation is presented. Several schemes developed using the normalized variable diagram and the total variation diminishing formalisms are compared along with essentially non-oscillatory schemes and genuinely multidimensional schemes. The calculations were carried out using the discrete ordinates method, but the analysis is equally valid for the finite-volume method. It is shown that the S schemes of the genuinely multidimensional family perform quite well, particularly in problems with discontinuous radiation intensity fields. However, they are time consuming, and so they do not always become more attractive regarding the trade-off between accuracy and computational requirements, in comparison with other high-order schemes that, although being less accurate, are also more economical.  相似文献   

15.
16.
The three-dimensional (3D) diffusion radiative transfer equation, which utilizes a four-term spherical harmonics expansion for the scattering phase function and intensity, has been efficiently solved by using the full multigrid numerical method. This approach can simulate the transfer of solar and thermal infrared radiation in inhomogeneous cloudy conditions with different boundary conditions and sharp boundary discontinuity. The correlated k-distribution method is used in this model for incorporation of the gaseous absorption in multiple-scattering atmospheres for the calculation of broadband fluxes and heating rates in the solar and infrared spectra. Comparison of the results computed from this approach with those computed from plane-parallel and 3D Monte Carlo models shows excellent agreement. This 3D radiative transfer approach is well suited for radiation parameterization involving 3D and inhomogeneous clouds in climate models.  相似文献   

17.
An analytical forward model and numerical algorithm for retrieving the parameters of water cloud of earth atmosphere from optical measurements carried out by satellite-based lidars is presented. The forward model, based on the analytical solution of the radiative transfer equation, is used to fit the temporal profile of the laser light pulses backscattered from the cloud layers. The cloud parameters extracted from the analysis at each position on earth include the transport mean free path, the average radius of water drops, the density of drops, the scattering length, the scattering cross section, the anisotropy factor, and the altitude of top level of major clouds. Also estimated is the possible thickness of cloud layers. The efficacy of the approach is demonstrated by generating parameters of water cloud using the data collected by NASA's cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO) satellite when it passed through North America on August 7, 2007.  相似文献   

18.
A direct method is given for the solution of the spherical harmonics approximation to the equation of radiative transfer in plane-parallel atmospheres. Although the method is formulated theoretically for non-homogeneous atmospheres with an arbitrary phase function, at present it has only been implemented for homogeneous atmospheres. Test computations performed for Rayleigh and Mie scattering phase functions show that the direct method is unconditionally stable and solves efficiently problems both for optically thin and very thick atmospheres. Timing comparisons with the method of Chandrasekhar for Rayleigh atmospheres and with an integral-equation iterative method for Mie atmospheres are quite favorable to the proposed method.  相似文献   

19.
Due to the long-time transient response of pulse irradiation, the computational time required for solving transient radiative transfer (TRT) is often very long, especially for the case in which the boundary is subjected to continuous pulse train and the geometry is complicated. In addition, sometimes, before actual experiments are carried out, a suitable pulse shape or type often needs to be selected by numerical simulation and comparison. Because the numerical solution of TRT needs to be repeated many times, the selection processes is very time-consuming. In this paper, by considering that the TRT equation and its initial and boundary conditions are linear, a time shift and superposition method is developed for solving TRT equation in non-emitting media, in which only the transient response of a short square pulse needs to be solved, and the solution of TRT under any pulse shape can be constructed by time shift and then superposition using the basis solution of the short square pulse. Three numerical examples are studied to illustrate the peformance of the superposition method in solving TRT problems. The results show that the superposition is effective, accurate and very suitable for solving TRT in the medium subjected to a series of pulse train.  相似文献   

20.
We present a method to solve the three-dimensional (3D) radiative transfer equation for astrophysical applications using adaptive photon transport grids. Contrary to earlier treatments, they are calculated for each frequency separately. Generated minimizing the first-order discretization error in the scattered radiation intensity, they provide global error control for solutions of radiative transfer problems on the grid. We discuss minimization of the grid point number in regions where the optical depth becomes large and show that the method allows for treating applications with optical depth of any value using the concept of penetration depth. The proposed grid generation algorithm is easy to implement, allows pre-calculation of the grids and storage in integer arrays, making a fast solution of the 3D radiative transfer equation possible. The grid generation algorithm is suitable for optimization in cases where simple radiation source distributions are given. Besides discussing application to simple density distribution commonly occurring in astrophysical objects, we illustrate the capabilities of the method by generating grids for an accretion disk around a young star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号