首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The problem of spatially varying, collimated radiation incident on an anisotropically scattering, plane-parallel medium is considered. A very general phase function is allowed. An integral transform is used to reduce the three-dimensional radiative transport equation to a one-dimensional form, and a modified Ambarzumian's method is applied to derive nonlinear integral and integro-differential equations for the generalized reflection and transmission functions. The integration is over the polar and azimuthal angles—this formulation is referred to as the double-integral formulation. The integral equations are used to illustrate symmetry relationships and to obtain single- and double-scattering approximations. The generalized reflection and transmission functions are important in the construction of the solutions to many multidimensional problems. Coupled integral equations for the interior and emergent intensities are developed and, for the case of two identical homogeneous layers, used to formulate a doubling procedure. Results for an isotropic and Rayleigh scattering medium are presented to illustrate the computational characteristics of the formulation.  相似文献   

2.
The curved ray-tracing method is extended to radiative transfer in the graded index medium with diffuse gray boundary conditions instead of black boundary conditions and the pseudo-source adding method is extended to the case of the linear-anisotropic scattering medium with graded index from non-scattering medium. Furthermore, the equivalence of the two methods is verified by formulation derivation. As exact analytical solutions, both the methods have high accuracy and fast computational speed. The predicted temperature distributions and dimensionless radiative heat flux at radiative equilibrium are determined by the proposed methods, and the numerical results are compared with the data in references. The results show that the present methods have a good accuracy. Influences of various combinations of refractive index and boundary emissivities on the temperature distributions and dimensionless radiative heat flux are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号