首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The polarization of emission lines formed in a medium immersed in external electric and magnetic fields is studied. The electric field is assumed to be quadrupolar in nature, while the magnetic field is uniform. We show that the quadrupole electric field produces line splitting which is characteristically different from the Zeeman effect. While the line components emitted along the quantization axis are circularly polarized in Zeeman effect, they are, in contrast, linearly polarized in the case of a pure quadrupole electric field. The emission perpendicular to the quantization axis produces three linearly polarized components in Zeeman effect, whereas only two linearly polarized components are observed in the case of quadrupole electric fields. Lack of azimuthal symmetry in the quadrupole electric field leads to polarized line components which appear quite differently for different azimuthal angles of the line of sight.  相似文献   

2.
On the basis of successful theoretical explanation of the observed large magnetic-field effect (by ∼7% with 1.5 T) on the dielectric constant below the Néel temperature TN of 5.5 K, we have demonstrated convincingly the magnetoelectric effect in an antiferromagnetic quantum paraelectric EuTiO3 system. The mutual control of electric and magnetic properties is revealed by the variation of the electric-field-induced polarization with applied magnetic fields as well as the change of the magnetic-field-induced spin moments under the control of electric fields. It is found that the applied electric field (magnetic field) acts like a fictitious magnetic field (electric field) on the EuTiO3 system. The magnetoelectric susceptibility is deduced to be proportional to the product of the magnetization, electrical polarization, magnetic susceptibility and dielectric susceptibility.  相似文献   

3.
The thermodynamics of the phase transition in a perovskite-like multiferroic, in which an antiferromagnetic ferroelectric transforms into a new magnetic state where a spiral spin structure and weak ferromagnetism can coexist in applied magnetic field H, is described. This state forms as a result of a first-order phase transition at a certain temperature (below Néel temperature T N ), where a helicoidal magnetic structure appears due to the Dzyaloshinskii-Moriya effect. In this case, the axes of electric polarization and the helicoid of magnetic moments are mutually perpendicular and lie in the ab plane, which is normal to principal axis c. Additional electric polarization p, which decreases the total polarization of the ferroelectric P, appears in the ab plane. The effect of applied magnetic and electric fields on the properties of a multiferroic with a helicoidal magnetic structure is described. An alternating electric field is shown to cause a field-linear change in magnetic moment m, whose sign is opposite to the sign of the change of electric field E. The detected hysteretic phenomena that determine the temperature ranges of overheating and supercooling of each phase are explained. A comparison with the experimental data is performed.  相似文献   

4.
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon.  相似文献   

5.
The effect of dc current I dc on the electron transport in a GaAs quantum well with AlAs/GaAs superlattice barriers is studied experimentally at a temperature of 4.2 K in magnetic fields up to 2 T. A sharp increase in resistance R xx is observed in magnetic fields higher than the critical field B c. The value of B c is found to decrease with increasing the current I dc. The phenomenon observed in the experiment is qualitatively explained by the electric breakdown of superlattice barriers under the action of the Hall field.  相似文献   

6.
《Current Applied Physics》2014,14(3):516-520
In this article, we employ the semiclassical Monte Carlo approach to study the spin polarized electron transport in single layer graphene channel. The Monte Carlo method can treat non-equilibrium carrier transport and effects of external electric and magnetic fields on carrier transport can be incorporated in the formalism. Graphene is the ideal material for spintronics application due to very low Spin Orbit Interaction. Spin relaxation in graphene is caused by D'yakonov-Perel (DP) relaxation and Elliott-Yafet (EY) relaxation. We study effect of electron electron scattering, temperature, magnetic field and driving electric field on spin relaxation length in single layer graphene. We have considered injection polarization along z-direction which is perpendicular to the plane of graphene and the magnitude of ensemble averaged spin variation is studied along the x-direction which is the transport direction. This theoretical investigation is particularly important in order to identify the factors responsible for experimentally observed spin relaxation length in graphene.  相似文献   

7.
A complex study of the magnetic, electric, magnetoelectric, and magnetoelastic properties of GdMnO3 single crystals has been performed in the low-temperature region in strong pulsed magnetic fields up to 200 kOe. An anomaly of the dielectric constant along the a axis of a crystal has been found at 20 K, where a transition from an incommensurate modulated phase to a canted antiferromagnetic phase, as well as electric polarization along the a and b axes of the crystal induced by the magnetic field Hb (Hcr ~ 40 kOe), is observed. Upon cooling the crystal in an electric field, the magnetic-field-induced electric polarization changes its sign depending on the sign of the electric field. The occurrence of the electric polarization is accompanied by anisotropic magnetostriction, which points to a correlation between the magnetoelectric and magnetoelastic properties. Based on these results, it has been stated that GdMnO3 belongs to a new family of magnetoelectric materials with the perovskite structure.  相似文献   

8.
The dependences of the antiferromagnetic resonance frequencies on the constant magnetic field H and constant electric field E are calculated for a KNiPO4 crystal with spontaneous electric polarization and antiferromagnetic order. It is demonstrated that the KNiPO4 crystal is characterized by an exchange-enhanced effect of the electric field E on the antiferromagnetic resonance frequencies. This effect is not revealed in the magnetoelectric materials studied earlier. It is established that oscillations of both magnetization and electric polarization exhibit resonance response at antiferromagnetic resonance frequencies. The expressions for these responses in alternating magnetic and electric fields are presented.  相似文献   

9.
A computational model which enables to evaluate the distribution of the critical currents, electric fields and the voltage in the winding of a solenoidal high temperature superconducting (HTS) magnets subjected to an external magnetic field parallel with the magnet axis, was developed. The model comes out from the well-known power law between the electric field and the transport current of the HTS tape short sample. It allows to predict the voltage–current V(I) characteristics of both the pancake coils and the complete magnet. The model was applied to the magnet system consisting of 22 pancake coils made of multifilamentary Bi(2223)/Ag tape at 20 K, which is subjected to an external uniform magnetic field parallel with the coil axis. A rather unexpected behavior of the magnet at different operating conditions (operating current and external magnetic field strength) is predicted, analyzed and reported together with a theoretical explanation. On one hand, the external uniform magnetic field parallel with the coil axis increases the resulting magnetic field strength, however, on the other hand it simultaneously decreases the angle between the resulting magnetic field and the tape surface. Thus, the effect of higher magnetic loading caused by the presence of an external magnetic field strength which is acting on individual turns located close to the coil’s flanges is compensated by more favorable orientation of the tape with respect to the resulting magnetic field. As a result, increase in the critical currents of these turns is expected. Further, the results indicate, that in case of the high field HTS insert coils the anisotropy in the Ic(B) characteristic does not play a substantial role. As a consequence, the technology of the production of the tapes for high field insert HTS coils should concentrate rather on the tapes having the current carrying capacity as high as possible, than on the attempt how to decrease the anisotropy in the Ic(B) by changing the architecture of the filaments in the tape.  相似文献   

10.
The bremsstrahlung is considered from a neutral Fermi particle with anomalous magnetic and electric moments in the field of a screened Coulomb center and in the presence of a plane electromagnetic wave. The effect of the wave polarization on the scattering cross section and the behavior of the particle spin during the scattering process are considered. Cross sections are given for scattering of a particle at a Coulomb center in the presence of constant, crossed electric and magnetic fields which are equal in magnitude and also for a free particle. It is shown that the effect of the anomalous electric moment is often decisive.  相似文献   

11.
12.
We have studied the production of electron–positron pairs due to polarization of vacuum in the presence of the strong electromagnetic field of two counterpropagating laser pulses. The structure of the electromagnetic field with the circular polarization has been determined using the 3D model of focused laser pulses, which was proposed by Narozhny and Fofanov. Analytic calculations have shown that the electric and magnetic fields are almost parallel to each other in the focal region when the laser pulses are completely transverse in the electric (E-wave) or magnetic (H-wave) field. On the other hand, the electric and magnetic fields are almost orthogonal when laser pulses consist of a mixture of E- and H-waves of the same amplitude. It has been found that although the latter configuration of colliding laser pulses has a much higher pair production threshold, it can generate much shorter electron–positron pulses as compared to the former configuration. The dependence of the production efficiency of pairs and their spatiotemporal distribution on the polarization of laser pulses has been analyzed using the structure of the electromagnetic field in the focal plane.  相似文献   

13.
《Physics letters. A》1999,264(1):74-83
Limits of the motional Stark effect on Rydberg atoms under the crossed magnetic and electric fields in the case of identical masses, and the hydrogen atom with combined circularly polarized microwave field and a magnetic field that is perpendicular to the plane of polarization have been shown recently to be integrable in the manifold z=Z=0. In this letter we prove the non integrability, in the Liouville–Arnold sense, of the Hamiltonian system corresponding to those limits in 3-dimensions. The proof makes use of a theorem of Morales and Ramis about non integrability based on differential Galois theory.  相似文献   

14.
Anisotropy of the nonlinear magnetoelectric effect in a single-crystal, single-domain sample of the β′ metastable ferroelectric paramagnetic phase of terbium molybdate Tb2(MoO4)3 was studied experimentally in dc magnetic fields of up to 6 T at temperatures of 4.2 and 1.8 K. It was shown that the existing models of the magnetoelectric effect cannot explain the experimental dependences of magnetic field-induced electric polarization on the direction of the applied magnetic field. A model of the magnetoelectric effect is proposed that qualitatively describes the observed angular dependence of the magnetic field-induced electric polarization.  相似文献   

15.
Measurements of the spin polarization of field emitted electrons from various ferromagnetic (Gd, Ni, Fe) and nonferromagnetic metals (W) show a steady increase of the angle? s between momentum and electron spin with increasing external magnetic field (spin rotation). This effect is refered to the coupling between the magnetic moment of the electron and the strong electric field in the potential barrier at the emitter surface during the tunneling process. A formal application of the equation of spin motion derived by Bargmann, Michel and Telegdi for an electron moving in homogeneous electromagnetic fields delivers a quantitative agreement with the experimental results.  相似文献   

16.
This paper reports on an experimental study of the effect of a magnetic field, B≤70 G, and an electric field, E=120 MV/m, on the critical current I c and I–V curves of DyBa2Cu3?x Oy HTSC ceramics (x=0 and 0.2), both undoped and doped with 1 wt % Pt. It has been established that, in stoichiometric ceramics (x=0) at 77 K, I c drops sharply (by more than an order of magnitude) already at very low B<1 G. In copper-deficient ceramics (x=0.2), I c decreases with increasing B slowly, with Pt-doped samples exhibiting [on the dropping I c (B) dependence] a peak effect, i.e., an increase rather than decrease of I c at B≈10 G. As for the effect of an electric field on I c and the I–V curves (the E effect), it is not observed in ceramics of a stoichiometric composition. DyBa2Cu2.8O y samples acted upon by an electric field reveal a substantial increase in I c and a decrease in the resistance R for I>I c . In the case of DyBa2Cu2.8Oy/Pt, the electric field practically does not affect I c but R decreases for I>I c . In a sample placed in a magnetic field, the magnitude of the E effect is observed to correlate with the I c (B) dependence. In particular, in Pt-doped samples, the E effect decreases with increasing magnetic field B not gradually but with a maximum appearing at B ≈10 G, i.e., in the region of the peak effect in the I c (B) dependence. The data obtained suggest the conclusion that the electric-field effect in ceramics exhibiting weak links of the superconductor-insulator-superconductor (SIS) type correlates with magnetic vortex pinning.  相似文献   

17.
The density matrix formalism has been used for computer calculations of the thickness of the excited slice, which determines the spatial resolution, in the case of quadrupolar nuclei havingI=3/2, for varying values of the electric quadrupolar coupling constant and the pulse-duration, when the spins are placed in a very strong magnetic field-gradient (50 T/m).  相似文献   

18.
Decelerating effect of electric fields on silicon microhardness changes induced by low-intensity (I = 10.4 × 104 cm?2 s?1) β irradiation has been revealed. The threshold character of the electric field effect is found (the effect is absent at electric fields E < 350 V cm?1).  相似文献   

19.
Using refined preparation techniques, cadmium guest atoms have been positioned at different sites on the surfaces of nickel crystals. The magnetic hyperfine fields and the electric field gradients at the Cd nuclei were measured by time-dependent perturbed angular correlation (TDPAC) spectroscopy of the emitted gamma radiations. By measuring the combined interactions, electric field gradients and magnetic hyperfine fields can be unambiguously attributed to each surface site. The signs of the magnetic hyperfine fields are determined by applying an external magnetic field and choosing the appropriate γ-ray detector configuration. The measured fields correlate with the number of neighbouring host atoms. Band structure calculations confirm this finding and predict magnetic fields for various sp elements from the band structure of the s-like conduction electrons. The quadrupolar interactions are manifestations of the balance in the occupation of the guest p-sublevels. These results provide new information on the structure and formation of electronic configurations of sp elements in different local environments and will contribute to understanding electronic effects on surfaces.  相似文献   

20.
We show that the joint effect of spin-orbit and magnetic fields leads to a spin polarization perpendicular to the plane of a homogeneous two-dimensional electron system with Rashba spin-orbit coupling and in-plane parallel dc magnetic and electric fields, for angle-dependent impurity scattering or nonparabolic energy spectrum, while only in-plane polarization persists for simplified models. We derive Bloch equations, describing the main features of recent experiments, including the magnetic field dependence of static and dynamic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号