首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The triply halide-bridged binuclear complexes [Ru2Cl5(CO)(AsPh3)3] (AsPh3 = triphenylarsine), [Ru2Cl5(CO)(PPh3)2(AsPh3)] (PPh3 = triphenylphosphine), [Ru2Cl5(CO)(AsPh3)2(PPh3)], [Ru2 Br5(CO)(PPh3)3], [Ru2Cl5(CO)(P{p-tol}3)2(PPh3)] (P{p-tol}3 = tri-p-tolylphosphine) and [Ru2 Br2Cl3(PPh3)2(AsPh3)] were prepared from the precursor compounds ttt-[RuX2(CO)2(P)2] (X = Cl or Br) and [RuY3(P')2S]·S (Y = Cl or Br; P=PPh3, AsPh3 or P{p- tol}3 and P' = AsPh3 or PPh3; S=DMA or MeOH, where DMA = N,N'-dimethylacetamide). The molecular structures of the binuclear complexes [Ru2Cl5(CO)(AsPh3)3] (P21/c), [Ru2Br5(CO)(PPh3)3] (P21/c) and ttt-[RuCl2(CO)2(PPh3)2] (P1) were determined by X-ray diffraction methods. The complexes are always formed by two Ru atoms bridged through three halide anions, two of which are × type (from the RuII precursor) and the other is Y type (from the rutheniumIII precursor) confirming our previously suggested mechanism for obtaining this class of complexes. The RuII atom is also coordinated to a carbon monoxide molecule and two P ligands from the ttt-starting isomer whereas the RuIII atom is bonded to two non-bridging Y halides and one P' molecule. The presence of RuIII was confirmed by EPR data, a technique that was also useful to suggest the symmetry of the complexes. The absence of intervalence charge-transfer transitions (IT) in the near infrared spectrum confirms that the binuclear complexes have localized valence. The IR spectra of the complexes show; (CO) bands close to 1970 cm?1 and ν(Ru-Cl) or(Ru-Br) bands at about 230–380 cm?1 corresponding to halides at terminal or bridged positions. Two widely separated redox processes, RuII/RuII←RuII/RuIII→RuIII/RuIII, were observed by cyclic voltammetry and differential pulse voltammetry.  相似文献   

2.
A new series of mono- and di-substituted ruthenium–polypyridine complexes of the type cis-[RuIII,II (bpy)2(L1)(L2)] n + (L1 = Cl, bta or py; L2 = bta; bpy = 2,2-bipyridine; bta = benzotriazole; py = pyridine) has been prepared, isolated as hexafluorophosphate salts, and investigated in organic solutions by means of cyclic voltammetry and spectroelectrochemistry. The chemical oxidation of all the benzotriazole derivatives, starting from cis-[RuII(bpy)2(L1)(bta)] x (x = +1 or +2), leads essentially to N(3)-bound products, i.e., cis-[RuIII(bpy)2 (L1)(N(3){bta})] x+1 isomers. Nevertheless, while the benzotriazole-monosubstituted species undergoes an intramolecular isomerization, N(3) N(2), accompanying the electrochemical reduction centered on the metal ion, RuIII RuII, the disubstituted derivatives do not display any spectral or electrochemical evidence of linkage isomerism. The equilibrium and kinetic constants for the isomerization were determined from the cyclic voltammograms at several scan rates, according to an electrochemical–chemical (EC) coupling scheme. The data were compared with a set of constants and parameters obtained previously for a series of ruthenium and iron complexes. The experimental results were found to be quite consistent with theoretical calculations, and reflect the importance of -backbonding interactions in the stabilization of the metal-centered reduced state (MII) on such species with low-spin d6 configuration.  相似文献   

3.
Mixed-chelate complexes of ruthenium have been synthesized using tridentate Schiff-base ligands (TDLs) derived from condensation of 2-aminophenol or 2-aminobenzoic acid with aldehydes (salicyldehyde, 2-pyridinecarboxaldehyde), and tmeda (tetramethylethylenediamine). [RuIII(hpsd)(tmeda)(H2O)]+ (1), [RuIII(hppc)(tmeda)(H2O)]2+ (2), [RuIII(cpsd)(tmeda)(H2O)]+ (3) and [RuIII(cppc)(tmeda)(H2O)]2+ (4) complexes (where hpsd2− = N-(hydroxyphenyl)salicylaldiminato); hppc = N-(2-hydroxyphenylpyridine-2-carboxaldiminato); cpsd2− = (N-(2-carboxyphenyl)salicylaldiminato); cppc = N-2-carboxyphenylpyridine-2-carboxaldiminato) were characterized by microanalysis, spectral (IR and UV–vis), conductance, magnetic moment and electrochemical studies. Complexes 14 catalyzed the epoxidation of cyclohexene, styrene, 4-chlorostyrene, 4-methylstyrene, 4-methoxystyrene, 4-nitrostyrene, cis- and trans-stilbenes effectively at ambient temperature using tert-butylhydroperoxide (t-BuOOH) as terminal oxidant. On the basis of Hammett correlation (log krel vs. σ+) and product analysis, a mechanism involving intermediacy of a [Ru–O–OBut] radicaloid species is proposed for the catalytic epoxidation process.  相似文献   

4.
Reduction of [Ru(acac)3] with zinc in THF/H2O provides a range of coordination and organometallic complexes containing RuII(acac)2, whose chemistry is reviewed. Most of these compounds, including those containing alkenes, undergo reversible one-electron oxidation to their RuIII(acac)2 counterparts, and the alkene-ruthenium(III) cations have been detected by spectroelectrochemistry. The cations derived from the chelate N-donor ligands o-CH2CHC6H4NMe2 and o-PhCCC6H4NMe2 have been isolated and structurally characterized. Comparison of the metrical data establishes that, whereas the alkene is less firmly bound to RuIII than to RuII, the alkyne is bound about as strongly to RuIII as to RuII. Some uncharged nucleophiles (pyridine, diethylamine, PPh3) react with the cationic RuIII complexes to give unusual, paramagnetic RuIII-C σ-bonded chelate complexes.  相似文献   

5.
A new heteropoly complex PW11RuIV and complexes of RuII, RuIII and RuV based thereon have been obtained. Using specrophotometry the states of RuIII and RuIV complexes in solution, the pH range of their stability, and the interaction of PW11RuIV with ClO4 ,SO4 2–, Cl ions have been studied. A conclusion has been thus made that the ruthenium ion in such a complex is not incorporated in the heteropolyanion lattice, but is attached only to its external oxygen atoms. Kinetics of oxidation of PW11RuIV and PW11RuIII with potassium chlorate have been studied. The activation energy and pre-exponential factor have been found for the reaction. The possibility that ClO4 and ClO3 in aqueous solutions can be activated by PW11RuII with the former and by PW11RuIII and PW11RuIV with the latter has been demonstrated.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1363–1369, August, 1993.The authors wish to thank I. L. Krayevskaya and V. M. Novopashina for X-ray fluorescence and ionic chromatographic analyses, respectively.  相似文献   

6.
Summary -Ketooxime [RC(O)C(NOH)R] (R = Me or Ph) ligands (HL) react with [Ru(PPh3)3Cl2] in refluxing EtOH to yield [Ru(PPh3)2(L)2] complexes. For R = Me, one isomer was obtained, while two isomers were isolated when R = Ph, due to a bulk effect. The complexes are diamagnetic and absorb intensely in the vis. region due to MLCT transitions. In MeCN and CH2Cl2 solution, RuII-RuIII oxidation occurs in the 0.69–0.92 V versus s.c.e. range. The oxidation potential depends on both the electronic nature of R and the stereochemistry of the complexes.  相似文献   

7.
The clectrochemical behaviour of the complexes [RuII(L)(CO)2Cl2], [RuII(L)(CO)Cl3][Me4N] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 (L = 2,2′-bipyridine or 4,4′-isopropoxycarbonyl-2,2′-bipyridine) has been investigated in CH3CN. The oxidation of [Ru(L)(CO)2Cl2] produces new complexes [RuIII(L)(CO)(CH3CN)2Cl]2+ as a consequence of the instability of the electrogenerated transient RuIII species [RuIII(L)(CO)2Cl2]+. In contrast, the oxidation of [RuII(L)(CO)Cl3][Me4N] produces the stable [RuIII(L)(CO)Cl3] complex. In contrast [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 is not oxidized in the range up to the most positive potentials achievable. The reduction of [RuII(L)(CO)2Cl2] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 results in the formation of identical dark blue strongly adherent electroactive films. These films exhibit the characteristics of a metal-metal bond dimer structure. No films are obtained on reduction of [RuII(L)(CO)Cl3][Me4N]. The effect of the substitution of the bipyridine ligand by electron-withdrawing carboxy ester groups on the electrochemical behaviour of all these complexes has also been investigated.  相似文献   

8.
While alkylperoxomanganese(iii) (MnIII–OOR) intermediates are proposed in the catalytic cycles of several manganese-dependent enzymes, their characterization has proven to be a challenge due to their inherent thermal instability. Fundamental understanding of the structural and electronic properties of these important intermediates is limited to a series of complexes with thiolate-containing N4S ligands. These well-characterized complexes are metastable yet unreactive in the direct oxidation of organic substrates. Because the stability and reactivity of MnIII–OOR complexes are likely to be highly dependent on their local coordination environment, we have generated two new MnIII–OOR complexes using a new amide-containing N5 ligand. Using the 2-(bis((6-methylpyridin-2-yl)methyl)amino)-N-(quinolin-8-yl)acetamide (H6Medpaq) ligand, we generated the [MnIII(OOtBu)(6Medpaq)]OTf and [MnIII(OOCm)(6Medpaq)]OTf complexes through reaction of their MnII or MnIII precursors with tBuOOH and CmOOH, respectively. Both of the new MnIII–OOR complexes are stable at room-temperature (t1/2 = 5 and 8 days, respectively, at 298 K in CH3CN) and capable of reacting directly with phosphine substrates. The stability of these MnIII–OOR adducts render them amenable for detailed characterization, including by X-ray crystallography for [MnIII(OOCm)(6Medpaq)]OTf. Thermal decomposition studies support a decay pathway of the MnIII–OOR complexes by O–O bond homolysis. In contrast, direct reaction of [MnIII(OOCm)(6Medpaq)]+ with PPh3 provided evidence of heterolytic cleavage of the O–O bond. These studies reveal that both the stability and chemical reactivity of MnIII–OOR complexes can be tuned by the local coordination sphere.

A pair of room-temperature-stable MnIII–alkylperoxo complexes were characterized and shown to oxidize PPh3. Thermal decomposition studies provide evidence of both homolysis and heterolysis of the MnIII–alkylperoxo O–O bond.  相似文献   

9.
Reaction of 2-(phenylazo)pyridine (pap) with [Ru(PPh3)3X2] (X = Cl, Br) in dichloromethane solution affords [Ru(PPh3)2(pap)X2]. These diamagnetic complexes exhibit a weakdd transition and two intense MLCT transitions in the visible region. In dichloromethane solution they display a one-electron reduction of pap near − 0.90 V vs SCE and a reversible ruthenium(II)-ruthenium(III) oxidation near 0.70 V vs SCE. The [RuIII(PPh3)2(pap)Cl2]+ complex cation, generated by coulometric oxidation of [Ru(PPh3)2(pap)Cl2], shows two intense LMCT transitions in the visible region. It oxidizes N,N-dimethylaniline and [RuII(bpy)2Cl2] (bpy = 2,2′-bipyridine) to produce N,N,N′,N′-tetramethylbenzidine and [RuIII(bpy)2Cl2]+ respectively. Reaction of [Ru(PPh3)2(pap)X2] with Ag+ in ethanol produces [Ru(PPh3)2(pap)(EtOH)2]2+ which upon further reaction with L (L = pap, bpy, acetylacetonate ion(acac) and oxalate ion (ox2−)) gives complexes of type [Ru(PPh3)2(pap)(L)]n+ (n = 0, 1, 2). All these diamagnetic complexes show a weakdd transition and several intense MLCT transitions in the visible region. The ruthenium(II)-ruthenium(III) oxidation potential decreases in the order (of L): pap > bpy > acac > ox2−. Reductions of the coordinated pap and bpy are also observed.  相似文献   

10.
Alcohols are oxidized by N‐methylmorpholine‐N‐oxide (NMO), ButOOH and H2O2 to the corresponding aldehydes or ketones in the presence of catalyst, [RuH(CO)(PPh3)2(SRaaiNR′)]PF6 ( 2 ) and [RuCl(CO)(PPh3)(SκRaaiNR′)]PF6 ( 3 ) (SRaaiNR′ ( 1 ) = 1‐alkyl‐2‐{(o‐thioalkyl)phenylazo}imidazole, a bidentate N(imidazolyl) (N), N(azo) (N′) chelator and SκRaaiNR′ is a tridentate N(imidazolyl) (N), N(azo) (N′), Sκ‐R is tridentate chelator; R and R′ are Me and Et). The single‐crystal X‐ray structures of [RuH(CO)(PPh3)2(SMeaaiNMe)]PF6 ( 2a ) (SMeaaiNMe = 1‐methyl‐2‐{(o‐thioethyl)phenylazo}imidazole) and [RuH(CO)(PPh3)2(SEtaaiNEt)]PF6 ( 2b ) (SEtaaiNEt = 1‐ethyl‐2‐{(o‐thioethyl)phenylazo}imidazole) show bidentate N,N′ chelation, while in [RuCl(CO)(PPh3)(SκEtaaiNEt)]PF6 ( 3b ) the ligand SκEtaaiNEt serves as tridentate N,N′,S chelator. The cyclic voltammogram shows RuIII/RuII (~1.1 V) and RuIV/RuIII (~1.7 V) couples of the complexes 2 while RuIII/RuII (1.26 V) couple is observed only in 3 along with azo reductions in the potential window +2.0 to ?2.0 V. DFT computation has been used to explain the spectra and redox properties of the complexes. In the oxidation reaction NMO acts as best oxidant and [RuCl(CO)(PPh3)(SκRaaiNR′)](PF6) ( 3 ) is the best catalyst. The formation of high‐valent RuIV=O species as a catalytic intermediate is proposed for the oxidation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Synthesis of six hydroxo-bridged binuclear manganese(III) complexes of formulae [MnL-X-MnL](ClO4) [X = OH (1–6)] along with a mononuclear manganese(III) complex (7) [Mn(L)(L′)(MeOH)2] [HL′ = 2-(2-hydroxy-phen-yl)benzimidazole] and two carboxylate-bridged binuclear manganese(III) complexes (8) and (9) are described. The complexes have been characterized by the combination of i.r., u.v.-vis spectroscopy, magnetic moments and by their redox properties. The electronic spectra of all the complexes exhibit almost identical features consisting of two d–d bands at ca. 550 and 600 nm, one MLCT band at ca.400 nm, together with two π–π* intra-ligand transitions at ca. 250 nm and ca.300 nm. Room temperature magnetic data range from μ = 2.7–3.0 BM indicates some super-exchange between the binuclear metal centers via bridging hydroxo/carboxylato groups. The X-ray crystal structure of the binuclear complex (5) revealed that it has a symmetric MnIIIN2O2 core bridged by a hydroxyl group. The X-ray analysis of the mononuclear complex (7) showed that the manganese-center possesses a distorted octahedral geometry. Electrochemical properties of hydroxo-bridged manganese(III) complexes (1–6) show identical features consisting of an irreversible and a quasi-reversible reduction corresponding to the Mn2III → MnIIMnIII → MnIIMnII couples in the voltammogram. It was found that electron withdrawing substituents on the ligand result in easier reduction. Complex (7) displays an irreversible reduction at 0.08 V and a reversible oxidation at 0.45V assignable to the MnIII → MnII reduction and MnIII → MnIV oxidation, respectively. The carboxylate-bridged compound (8) exhibits two irreversible oxidations at 0.4 and 0.6 V, probably due to Mn2III → MnIIIMnIV → MnIVMnIV oxidations and shows a quasi-reversible reductive wave at −0.85 V, tentatively assigned to Mn2III → MnIIMnIII reduction.  相似文献   

12.
We report the synthesis of a mixed‐valence ruthenium complex, bearing pyrene moieties on one side of the ligands as anchor groups. Composites consisting of mixed‐valence ruthenium complexes and SWNTs were prepared by noncovalent π–π interactions between the SWNT surface and the pyrene anchors of the Ru complex. In these composites, the long axis of the Ru complexes was aligned in parallel to the principal direction of the SWNT. The optimized conformation of these complexes on the SWNT surface was calculated by molecular mechanics. The composites were examined by UV/Vis absorption and FT‐IR spectroscopy, XPS, and SEM analysis. Furthermore, their electrochemical properties were evaluated. Cyclic voltammograms of the composites showed reversible oxidation waves at peak oxidation potentials (Epox) = 0.86 and 1.08 V versus Fc+/Fc, which were assigned to the RuII‐RuII/RuII‐RuIII and the RuII‐RuIII/RuIII‐RuIII oxidation events of the dinuclear ruthenium complex, respectively. Based on these observations, we concluded that the electrochemical properties and mixed‐valence state of the dinuclear ruthenium complexes were preserved upon attachment to the SWNT surface.  相似文献   

13.
Reaction of [Ru(trpy)Cl3] with quinolin-8-ol (HQ) yields [Ru(trpy)(Q)Cl]. Treatment of [Ru(trpy)(Q)Cl] with Ag+ in Me2CO–H2O (3:1) and MeCN gives [Ru(trpy)- (Q)(H2O)]+ and [Ru(trpy)(Q)(MeCN)]+, respectively, which were isolated as their perchlorate salts. A similar reaction in EtOH, in the presence of NaN3, yields [Ru(trpy)(Q)(N3)]. All complexes are diamagnetic (low-spin, d6, S = 0) and show many intense m.l.c.t. transitions in the visible region. They display a reversible RuII-RuIII oxidation in the -0.13-0.48 V versus s.c.e. range, followed by an irreversible RuIII-RuIV oxidation in the 0.46–1.08V versus s.c.e. range and three trpy-based reductions on the negative side of s.c.e. Chemical oxidation of [RuII(trpy)(Q)Cl] by Ce4+ gives [Ru(trpy)-(Q)Cl]+ which shows intense l.m.c.t. transitions in the visible region together with a weak ligand field transition in the lower energy region. The complex is one-electron paramagnetic (low-spin, d5, S=1/2) and shows a rhombic e.s.r. spectrum in MeCN–PhMe (1:1) solution at 77K. Chemical oxidation of [Ru(trpy)(Q)-(H2O)]+ results in the formation of a -oxo dimer, [{Ru(trpy)(Q)}2O]2+.  相似文献   

14.
The water-soluble complex [RuClCp(PPh3)(mPTA)](CF3SO3) reacts with the thiopurines, bis(S-8-thiotheophylline)methane (MBTTH2), 1,2-bis(S-8-thiotheophylline)ethane (EBTTH2), and 1,3-bis(S-8-thiotheophylline)propane (PBTTH2), to lead to the binuclear ruthenium(II) complexes [{RuCp(PPh3)(mPTA)}2-μ-(LS7,S′7)](CF3SO3)2 where (L = MBTT2? (1), EBTT2? (2), and PBTT2? (3)). All the complexes have been fully characterized by elemental analysis, IR, and multinuclear 1H, 13C{1H}, and 31P{1H} NMR spectroscopy. The cyclic voltammetry of the complexes is characterized by two one-electron oxidative responses (RuII–RuII/RuIII–RuII; RuIII–RuII/RuIII–RuIII) that increase their redox potential when the bis(8-thiotheophylline)-alkyl-bridge growths. The reactivity against DNA and partition coefficient of the complexes were also determined.  相似文献   

15.
Summary The single-step electrochemical synthesis of neutral transition metal complexes of imidazole, pyrazole and their derivatives has been achieved at ambient temperature. The metal was oxidized in an Me2CO solution of the diazole to yield complexes of the general formula: [M(Iz)2] (where M = Co, Ni, Cu, Zn; Iz = imidazolate); [M(MeIz)2] (where M = Co, Ni, Cu, Zn; MeIz = 4-methylimidazolate); [M(PriIz)2] (where M = Co, Ni, Cu, Zn; PriIz = 2-isopropylimidazolate); [M(pyIz)n] (where M = CoIII, CuII, ZnII; pyIz = 2-(2-pyridyl)imidazolate); [M(Pz)n] (where M = CoIII, NiII, CuII, ZnII; Pz = pyrazolate); [M(ClPz)n] and [M(IPz)n] (where M = CoIII, NiII, CuII, ZnII; ClPz = 4-chloropyrazolate; IPz = 4-iodopyrazolate); [M(Me2Pz)n] (where M = CoII, CuI, ZnII; Me2Pz = 3,5-dimethylpyrazolate) and [M(BrMe2Pz)n] (where M = CoII, NiII, CuI, ZnII; BrMe2Pz = 3,5-dimethyl-4-bromopyrazolate). Vibrational spectra verified the presence of the anionic diazole and electronic spectra confirmed the stereochemistry about the metal centre. Variable temperature (360-90 K) magnetic measurements of the cobalt and copper chelates revealed strong antiferromagnetic interaction between the metal ions in the lattice. Data for the copper complexes were fitted to a Heisenberg (S= ) model for an infinite one-dimensional linear chain, yielding best fit values of J=–62––65cm–1 andg = 2.02–2.18. Data for the cobalt complexes were fitted to an Ising (S= ) model with J=–4.62––11.7cm–1 andg = 2.06–2.49.  相似文献   

16.
Abstract

The triply chloro-bridged binuclear complex [Ru2Cl5(CO)(PPh3)3]·CH2Cl2, (PPh3 = triphenylphosphine), Mr = 1279.23, prepared from the precursor compound [RuCl3(PPh3)2DMA]·DMA (DMA = N,N′-dimethylacetamide) and crystallizes in the monoclinic space group P21/c. The structure was solved from 6994 independent reflections for which I > 3σ(I) by Patterson and difference Fourier techniques and refined to a final R = 0.042. The complex is formed by two Ru atoms bridged through three chloride anions. One Ru atom is further coordinated to two non-bridging Cl atoms and a triphenylphosphine ligand, whereas the other is bonded to two PPh3 ligands and a carbon monoxide molecule. The presence of RuIII was confirmed by EPR data. The absence of an intervalence charge-transfer transition (IT) in the near-infrared spectrum suggests that the binuclear complex is of a localized valence type. The IR spectrum shows a νCO band at 1964cm? and νRu-Cl bands at 328, 280 cm?1, corresponding to chlorides at terminal positions and 250, 225 cm?1 for the bridged ones. Two redox processes, RuII/RuII (E1/2 = -0.29 V) ← RuII/RuIII ← (E1/2 = 1.19 V) RuIII/RuIII, were observed by cyclic voltammetry.  相似文献   

17.
A series of hexacoordinated RuIII–PPh3 complexes of general formula [RuCl(PPh3)L] (L = tetradentate Schiff bases derived from the condensation of 2-furaldehyde or thiophene-2-carboxyaldehyde with alkyl and aryl diamines have been synthesized. The complexes were characterized by elemental analyses, spectroscopic and cyclic voltammetric studies. All of the complexes were paramagnetic. Coordination of the Schiff base appears to occur through the two nitrogen and two heterocyclic oxygen/sulphur atoms.  相似文献   

18.
The reactions of [Ru(H)(Cl)(CO)(PPh3)3] with 3,5-di-tert-butyl-o-benzoquinone (dbq) and 3,4,5,6-tetrachloro-o-benzoquinone (tcq) have afforded the corresponding semiquinone complexes [RuII(dbsq)(Cl)(CO)(PPh3)2] and [RuII(tcsq)(Cl)(CO)(PPh3)2], respectively. The reaction of [Ru(H)2(CO)(PPh3)3] with tcq has furnished [RuII(tcsq)(H)(CO)(PPh3)2]. Structure determination of [Ru(dbsq)(Cl)(CO)(PPh3)2] has revealed that it is a model semiquinonoid chelate with two equal C---O lengths ( 1.291(6) and 1.296(6) Å). The complexes are one-electron paramagnetic (1.85μB) and their EPR spectra in fluid media display a triplet structure (g2.00) due to superhyperfine coupling with two trans-31P atoms (Aiso17 G). The stretching frequency of the CO ligand increases by 20 cm−1 in going from [Ru(dbsq)(Cl)(CO)(PPh3)2] to [Ru(tcsq)(Cl)(CO)(PPh3)2] consistent with electron withdrawal by chloro substituents. For the same reason the E1/2 values of the cyclic voltammetric quinone/semiquinone and semiquinone/catechol couples undergo a shift of 500 mV to higher potentials between [Ru(dbsq)(Cl)(CO)(PPh3)2] and [Ru(tcsq)(Cl)(CO)(PPh3)2].  相似文献   

19.
Hereby we present the synthesis of several ruthenium(II) and ruthenium(III) dithiocarbamato complexes. Proceeding from the Na[trans‐RuIII(dmso)2Cl4] ( 2 ) and cis‐[RuII(dmso)4Cl2] ( 3 ) precursors, the diamagnetic, mixed‐ligand [RuIIL2(dmso)2] complexes 4 and 5 , the paramagnetic, neutral [RuIIIL3] monomers 6 and 7 , the antiferromagnetically coupled ionic α‐[RuIII2L5]Cl complexes 8 and 9 as well as the β‐[RuIII2L5]Cl dinuclear species 10 and 11 (L=dimethyl‐ (DMDT) and pyrrolidinedithiocarbamate (PDT)) were obtained. All the compounds were fully characterised by elemental analysis as well as 1H NMR and FTIR spectroscopy. Moreover, for the first time the crystal structures of the dinuclear β‐[RuIII2(dmdt)5]BF4 ? CHCl3 ? CH3CN and of the novel [RuIIL2(dmso)2] complexes were also determined and discussed. For both the mono‐ and dinuclear RuII and RuIII complexes the central metal atoms assume a distorted octahedral geometry. Furthermore, in vitro cytotoxicity of the complexes has been evaluated on non‐small‐cell lung cancer (NSCLC) NCI‐H1975 cells. All the mono‐ and dinuclear RuIII dithiocarbamato compounds (i.e., complexes 6 – 10 ) show interesting cytotoxic activity, up to one order of magnitude higher with respect to cisplatin. Otherwise, no significant antiproliferative effect for either the precursors 2 and 3 or the RuII complexes 4 and 5 has been observed.  相似文献   

20.
The reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip, or mor) and dehydroacetic acid thiosemicarbazone (abbreviated as H2dhatsc where H2 stands for the two dissociable protons) in benzene under reflux afford a series of new ruthenium(II) carbonyl complexes containing dehydroacetic acid thiosemicarbazone of general formula [Ru(dhatsc)(CO)(B)(EPh3)] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip or mor; dhatsc = dibasic tridentate dehydroacetic acid thiosemicarbazone). All the complexes have been characterized by elemental analyses, FT-IR, UV-Vis, and 1H NMR spectral methods. The thiosemicarbazone of dehydroacetic acid behaves as dianionic tridentate O, N, S donor and coordinates to ruthenium via phenolic oxygen of dehydroacetic acid, the imine nitrogen of thiosemicarbazone and thiol sulfur. In chloroform solution, all the complexes exhibit metal-to-ligand charge transfer transitions (MLCT). The crystal structure of one of the complexes [Ru(dhatsc)(CO)(PPh3)2] (1) has been determined by single crystal X-ray diffraction which reveals the presence of a distorted octahedral geometry in the complexes. All the complexes exhibit an irreversible oxidation (RuIII/RuII) in the range 0.76-0.89 V and an irreversible reduction (RuII/RuI) in the range −0.87 to −0.97 V. Further, the free ligand and its ruthenium complexes have been screened for their antibacterial and antifungal activities. The complexes show better activity in inhibiting the growth of bacteria Staphylococcus aureus and Escherichia coli and fungus Candida albicans and Aspergillus niger. These results made it desirable to delineate a comparison between free ligand and its ruthenium complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号