首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylinositol 3-kinase (PI3K) is essential for both G protein-coupled receptor (GPCR)- and receptor tyrosine kinase (RTK)-mediated cancer cell migration. Here, we have shown that maximum migration is achieved by full activation of phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) in the presence of Gβγ and PI3K signaling pathways. Lysophosphatidic acid (LPA)- induced migration was higher than that of epidermal growth factor (EGF)-induced migration; however, LPA-induced activation of Akt was lower than that stimulated by EGF. LPA-induced migration was partially blocked by either Gβγ or RTK inhibitor and completely blocked by both inhibitors. LPA-induced migration was synergistically increased in the presence of EGF and vice versa. In correlation with these results, sphingosine-1-phosphate (S1P)-induced migration was also synergistically induced in the presence of insulin-like growth factor-1 (IGF-1). Finally, silencing of P-Rex1 abolished the synergism in migration as well as in Rac activation. Moreover, synergistic activation of MMP-2 and cancer cell invasion was attenuated by silencing of P-Rex1. Given these results, we suggest that P-Rex1 requires both Gβγ and PI3K signaling pathways for synergistic activation of Rac, thereby inducing maximum cancer cell migration and invasion.  相似文献   

2.
The role of DNA hypermethylation in human neoplasia   总被引:3,自引:0,他引:3  
Toyota M  Issa JP 《Electrophoresis》2000,21(2):329-333
Cancer development and progression is dictated by a series of alterations in genes such as oncogenes, tumor suppressor genes, DNA repair genes, and others. DNA methylation is an epigenetic modification that is profoundly altered in most cancers. Recently, hypermethylation of CpG-rich areas located in the promoter of genes (CpG islands) has been shown to be commonly implicated in silencing tumor suppressor genes in cancer. By cloning and characterizing a large number of such CpG islands hypermethylated in colon cancer, we found that two processes explain most of these events. Age-related CpG island methylation in a subset of cells in normal tissues, followed by intensification of methylation in cancer cells explains the majority of hypermethylation events in colon cancer and may provide a mechanistic link between aging and cancer formation. Most of the other CpG islands methylated in colon cancer can be explained by a newly described phenotype, the CpG island methylator phenotype (CIMP) which results in multiple methylation events in a subset of cancers. CIMP accounts for the majority of sporadic colon cancers characterized by microsatellite instability, as well as most tumors with k-ras mutations. Understanding further the factors that lead to, and modulate, aberrant methylation in cancer may provide novel avenues for prevention and treatment of this disease.  相似文献   

3.
Cancer is the second most fatal disease worldwide, with colon cancer being the third most prevalent and fatal form of cancer in several Western countries. The risk of acquisition of resistance to chemotherapy remains a significant hurdle in the management of various types of cancer, especially colon cancer. Therefore, it is essential to develop alternative treatment modalities. Naturally occurring alkaloids have been shown to regulate various mechanistic pathways linked to cell proliferation, cell cycle, and metastasis. This review aims to shed light on the potential of alkaloids as anti-colon-cancer chemotherapy agents that can modulate or arrest the cell cycle. Preclinical investigated alkaloids have shown anti-colon cancer activities and inhibition of cancer cell proliferation via cell cycle arrest at different stages, suggesting that alkaloids may have the potential to act as anticancer molecules.  相似文献   

4.
Over the past few decades, advances in genetics and molecular biology have revolutionized our understanding of cancer initiation and progression. Molecular progression models outlining genetic events have been developed for many solid tumors, including colon cancer. Previous reports in the literature have shown a relationship between different KRAS mutations and prognosis and response to medical treatment in colon cancer patients. Furthermore, the presence of a mutated KRAS has been correlated with different clinicopathological variables including age and gender of patients and tumor location. To our knowledge, few institutions screen for KRAS mutations on regular basis in colon cancer patients despite such evidence that knowledge of KRAS exon 1 status is informative. Here, we report on a mutation analysis method adapted to a 96-capillary electrophoresis instrument that allows identification of all 12 oncogenic mutations in KRAS exon 1 under denaturing conditions. To determine the optimal parameters, a series of DNA constructs generated by site-directed mutagenesis was analyzed and the migration times of all mutant peaks were measured. A classification tree was then made based on the differences in migration time between the mutants and an internal standard. A randomized series of 500 samples constructed with mutagenesis as well as 60 blind samples from sporadic colon carcinomas was analyzed to test the method. No wild-type samples were scored as mutants and all mutants were correctly identified. Post polymerase chain reaction (PCR) analysis time of 96 samples was performed within 40 min.  相似文献   

5.
Raman micro-spectroscopic analysis of cultured HCT116 colon cancer cells in the presence of roscovitine, [seliciclib, 2-(1-ethyl-2-hydroxy-ethylamino)-6-benzylamino-9-isopropylpurine], a promising drug candidate in cancer therapy, has been performed for the first time. The aim of this study was to investigate modulations in colon cancer cells induced by roscovitine. Raman spectra of the cultured HCT116 colon cancer cells treated with roscovitine at different concentrations (0, 5, 10, 25 and 50 μM) were recorded in the range 400-1850 cm(-1). It was shown that the second derivative profile of the experimental spectrum gives valuable information about the wavenumbers and band widths of the vibrational modes of cell components, and it eliminates the appearance of false peaks arising from incorrect baseline corrections. In samples containing roscovitine, significant spectral changes were observed in the intensities of characteristic protein and DNA bands, which indicate roscovitine-induced apoptosis. Roscovitine-induced apoptosis was also assessed by flow cytometry analysis, and analysis of propidium iodide staining. We observed some modifications in amide I and III bands, which arise from alterations in the secondary structure of cell proteins caused by the presence of roscovitine.  相似文献   

6.
Pterostilbene is a dietary phytochemical that has been found to possess several biological activities, such as antioxidant and anti-inflammatory. Recent studies have shown that it exhibits the hallmark characteristics of an anticancer agent. The aim of the study was to investigate the anticancer activity of pterostilbene against HT-29 human colon cancer cells, focusing on its influence on cell growth, differentiation, and the ability of this stilbene to induce cell death. To clarify the mechanism of pterostilbene activity against colon cancer cells, changes in the expression of several genes and proteins that are directly related to cell proliferation, signal transduction pathways, apoptosis, and autophagy were also evaluated. Cell growth and proliferation of cells exposed to pterostilbene (5–100 µM) were determined by SRB and BRDU assays. Flow cytometric analyses were used for cell cycle progression. Further molecular investigations were performed using quantitative real-time RT-PCR. The expression of the signaling proteins studied was determined by the ELISA method. The results revealed that pterostilbene inhibited proliferation and induced the death of HT-29 colon cancer cells. Pterostilbene, depending on concentration, caused inhibition of proliferation, G1 cell arrest, and/or triggered apoptosis in HT-29 cells. These effects were mediated by the down-regulation of the STAT3 and AKT kinase pathways. It may be concluded that pterostilbene could be considered as a potential therapeutic option in the treatment of colon cancer in the future.  相似文献   

7.
The anticancer drug belinostat is a hydroxamate histone deacetylase inhibitor that has shown significant antitumour activity in various tumour models and also in clinical trials. In this study, we utilized a proteomic approach in order to evaluate the effect of this drug on protein expression in the human colon cancer cell line HCT116. Protein extracts from untreated HCT116 cells, and cells grown for 24 h in the presence of 1 and 10 μM belinostat were analysed by 2‐D gel electrophoresis. Proteins were visualized by colloidal Coomassie blue staining and quantitative analysis of gel images revealed 45 unique differentially expressed proteins that were identified by LC‐MSMS analysis. Among these proteins, of particular interest are the downregulated proteins nucleophosmin and stratifin, and the upregulated proteins nucleolin, gelsolin, heterogeneous nuclear ribonucleoprotein K, annexin 1, and HSP90B that all were related to the proto‐oncogene proteins p53, Myc, activator protein 1, and c‐fos protein. The modulation of these proteins is consistent with the observations that belinostat is able to inhibit clonogenic cell growth of HCT116 cells and the biological role of these proteins will be discussed.  相似文献   

8.
Human NOTCH1 receptor contains 36 epidermal growth factor (EGF)-like repeating domains, in which O-glycosylation status of EGF12 domain regulates the interaction with Notch ligands. Our interest is focused on the effect of specific O-glycosylation states on the structural behavior of EGF11 and EGF10, because they appeared to affect molecular mechanism in receptor–ligand interactions by inducing some conformational alterations in these domains and/or the regions connecting two domains. To understand the structural impact of various O-glycosylation patterns on the pivotal EGF-like repeats 10, 11, and 12, we performed chemical synthesis and NMR studies of site-specifically O-glycosylated EGF11 and EGF10. Our strategy enabled us to synthesize four EGF11 and five EGF10 modules. The specific O-glycosylation states affected in vitro folding of EGF10 more than EGF11, while calcium ion had a larger effect on EGF11 folding. Comprehensive NMR studies shed light on the new type “sugar bridges” crosslinking Thr-O-GlcNAc in the consensus sequence C5-X-X-G-X-(T/S)-G-X-X-C6 and an amino acid in the hinge region between the domains, 445Thr-O-GlcNAc—IIe451 in domain 11 and 405Thr-O-GlcNAc—Gln411 in domain 10, respectively.  相似文献   

9.
Russian Chemical Bulletin - Earlier, the data on the ability of laminin-332 to protect liver cancer cells from apoptosis caused by doxorubicin, sorafenib, and gefitinib have been obtained. In order...  相似文献   

10.
多药耐药性问题是导致第一代紫杉烷药物在临床化疗失败的主要原因。本文对紫杉醇C7、C10、C14、C3′多个位点的取代基进行改造,针对合成的6个新型的紫杉烷化合物,在体外考察其对多药耐药肿瘤细胞株以及人结肠癌HCT-116干细胞的增殖抑制活性,实验结果表明6个化合物的抗多药耐药活性均优于紫杉醇。采用P-gp高表达的犬肾细胞MDCK-MDR1进一步研究高活性候选化合物JT-3与P-gp的相互作用。以此研发抗多药耐药型的新一代紫杉烷类药物,对开发扩大抗癌新适应症的新一代紫杉烷类抗癌药意义重大。  相似文献   

11.
Eurycomanone (EN) is one of the representative quassinoid diterpenoids from roots of Eurycoma longifolia Jack, a natural medicine that is widely distributed in Southeast Asia. Previous studies showed that EN induces cancer cell apoptosis and exhibits anti-cancer activity, but the molecular mechanism of EN against cancer has still not been elucidated. In this study, we examined the regulatory effect of EN on autophagy to reveal the mechanism of EN-mediated colon cancer growth inhibition. First, we found that EN is able to inhibit colon cancer cell proliferation and colony formation. The angiogenesis level in cancer cells was inhibited as well. Next, the treatment of EN led to the suppression of autophagy, which was characterized by the downregulation of the LC3-II level and the formation of GFP-LC3 puncta under EN treatment in colon cancer. Moreover, we revealed that the mTOR signaling pathway was activated by EN in a time- and concentration-dependent manner. Finally, autophagy induction protected colon cancer cells from EN treatment, suggesting that autophagy improves cell survival. Taken together, our findings revealed the mechanism of EN against colon cancer through inhibiting autophagy and angiogenesis in colon cancer, supporting that the autophagy inhibitor EN could be developed to be a novel anti-cancer agent.  相似文献   

12.
Young green barley (YGB) water extract has revealed a beneficial impact on natural killer (NK) cells’ ability to recognize and eliminate human colon cancer cells, without any side effects for normal colon epithelial cells. The direct anticancer effect of the tested compounds has been also shown. The mixture of oligosaccharides found in this extract was characterized by chemical analyses and via FT-IR spectroscopy and MALDI-TOF MS techniques. The YGB preparation contained 26.9% of proteins and 64.2% of sugars, mostly glucose (54.7%) and fructose (42.7%), with a small amount of mannose (2.6%) and galactose (less than 0.5%). Mass spectrometry analysis of YGB has shown that fructose oligomers contained from 3 to 19 sugar units. The number of fructans was estimated to be about 10.2% of the dry weight basis of YGB. The presented results suggest the beneficial effect of the consumption of preparations based on young barley on the human body, in the field of colon cancer prevention.  相似文献   

13.
In this study, an analytical multiplatform is presented to carry out a broad metabolomic study on the anti-proliferative effect of dietary polyphenols on human colon cancer cells. CE, RP/UPLC, and HILIC/UPLC all coupled to TOF MS were combined to achieve a global metabolomic examination of the effect of dietary polyphenols on HT29 colon cancer cells. By the use of a nontargeted metabolomic approach, metabolites showing significant different expression after the polyphenols treatment were identified in colon cancer cells. It was demonstrated that this multianalytical platform provided extensive metabolic information and coverage due to its complementary nature. Differences observed in metabolic profiles from CE-TOF MS, RP/UPLC-TOF MS, and HILIC/UPLC-TOF MS can be mainly assigned to their different separation mechanisms without discarding the influence of the different tools used for data processing. Changes in glutathione metabolism with an enhanced reduced glutathione/oxidized glutathione (GSH/GSSG) ratio were detected in polyphenols-treated cells. Moreover, significant alterations in polyamines content with important implications in cancer proliferation were observed after the treatment with polyphenols. These results from metabolomics can explain the chemopreventive effect of the tested dietary polyphenols on colon cancer and may be of importance for future prevention and/or treatment of this disease.  相似文献   

14.
Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the transmembrane protein from the PDMS surface was found to be 75-81%. However, the transfer of non-specifically bound protein was substantially less than 75%, thus leading to the important finding that mechanical transfer of the EGF receptor leads to an approximately four-fold increase in signal-to-background from 20 : 1 to 88 : 1. The signal-to-background obtained following mechanical transfer is also better than that obtained using ELISA plates and stripping buffer (<48 : 1). The EGF receptor is a clinically important protein and the target of numerous anticancer agents and thus these results, when combined, provide guidance for the design of PDMS-based microanalytical systems for the capture and isolation of complex and clinically important transmembrane proteins.  相似文献   

15.
Essential oils (EOs) are a complex mixture of hydrophobic and volatile compounds synthesized from aromatic plants, commonly present in the human diet. In recent years, many in vitro studies have suggested possible anticancer properties of single EO compounds, on colorectal cancer (CRC) cells. However, the majority of these studies did not compare the effects of these compounds on normal and cancer colon cells. By using NCM-460, a normal human mucosal epithelial cell line, Caco-2, a human colon epithelial adenocarcinoma cell line, and SW-620, colon cancer cells derived from lymph node metastatic site, we identified cinnamaldehyde, derived from cinnamon EO and eugenol, derived from bud clove EO, as compounds with a specific anticancer action selectively targeting the transformed colonic cells. Both cinnamaldehyde (75 µM) and eugenol (800 µM), after 72 h of treatment, were capable to induce apoptosis, necrosis and a cell cycle slowdown in Caco-2 and in SW-620, but not in NCM-460 cells. If associated with a targeted delivery to the colon, these two compounds could prove effective in the prevention or treatment of CRC.  相似文献   

16.
Here, a novel strategy of formulating efficient polymeric carriers based on the already described INU-IMI-DETA for gene material whose structural, functional, and biological properties can be modulated and improved was successfully investigated. In particular, two novel derivatives of INU-IMI-DETA graft copolymer were synthesized by chemical functionalisation with epidermal growth factor (EGF) or polyethylenglycol (PEG), named INU-IMI-DETA-EGF and INU-IMI-DETA-PEG, respectively, in order to improve the performance of already described “inulin complex nanoaggregates” (ICONs). The latter were thus prepared by appropriately mixing the two copolymers, by varying each component from 0 to 100 wt% on the total mixture, named EP-ICONs. It was seen that the ability of the INU-IMI-DETA-EGF/INU-IMI-DETA-PEG polymeric mixture to complex siGL3 increases with the increase in the EGF-based component in the EP-ICONs and, for each sample, with the increase in the copolymer:siRNA weight ratio (R). On the other hand, the susceptibility of loaded siRNA towards RNase decreases with the increase in the pegylated component in the polymeric mixture. At all R values, the average size and the zeta potential values are suitable for escaping from the RES system and suitable for prolonged intravenous circulation. By means of biological characterisation, it was shown that MCF-7 cells are able to internalize mainly the siRNA-loaded into EGF-decorated complexes, with a significant difference from ICONs, confirming its targeting function. The targeting effect of EGF on EP-ICONs was further demonstrated by a competitive cell uptake study, i.e., after cell pre-treatment with EGF. Finally, it was shown that the complexes containing both EGF and PEG are capable of promoting the internalisation and therefore the transfection of siSUR, a siRNA acting against surviving mRNA, and to increase the sensitivity to an anticancer agent, such as doxorubicin.  相似文献   

17.
The activities and modes of probiotic action of lactic acid bacteria isolated from infant feces were investigated for alternative application in the prevention and biotherapy of colon cancer. From a total of 81 isolates of Gram-positive rod and cocci bacteria obtained from healthy infants, only 15 isolates had the probiotic criteria which included growth inhibition against eight food-borne pathogens, no blood hemolysis, and tolerance to gastrointestinal tract properties such as pH?2.5 and 0.3 % bile salt. Four probiotic bacteria showed antiproliferation of colon cancer cells with the use of MTT and Trypan blue exclusion assay at the rates of 17–35 %. Through comparison of probiotic 16S rRNA sequences, they were identified as Pediococcus pentosaceus FP3, Lactobacillus salivarius FP25, L. salivarius FP35, and Enterococcus faecium FP51. Finding the mechanism of proliferative inhibition of colon cancer cells in this study indicated synergic induction by probiotic bacteria directly adhered to these cancer cells and triggered the bioproduction of short-chain fatty acids, mainly butyric and propionic acids. This study suggested that the use of these probiotics may be suitable as an alternative bioprophylactic and biotherapeutic strategy for colon cancer.  相似文献   

18.
Cancer stem cells (CSCs) are known to be resistant to conventional chemotherapy and radiotherapy. Specific CSC targeting and eradication is therefore a therapeutically important challenge. CD133 is a colorectal CSC marker with unknown function(s). Assessing proteomic changes induced by CD133 may provide clues not only to new CD133 functions but also to the chemotherapy and radiation susceptibility of colon cancer cells. To identify the proteins affected by CD133, CD133‐positive (CD133+), and CD133‐negative (CD133–) human colon cancer cells were obtained by cell sorting. Whole proteomes were profiled from SW620/CD133+ and SW620/CD133– cells and analyzed by 2D‐based proteome analysis. Nucleophosmin (NPM1) was identified as a protein regulated by CD133. CD133 protein level was not affected by NPM1, and an interaction between the two proteins was not observed. CD133 and NPM1 protein levels were positively correlated in 11 human colon cancer cell lines. The CD133+ subpopulation percentage or its value normalized against CD133 protein level was only linked to intrinsic susceptibility of human colon cancer cells to 5‐fluorouracil (5‐FU). However, either suppression of CD133 or NPM1 significantly increased 5‐FU susceptibility of SW620. The present study suggests that CD133‐regulated NPM1 protein level may provide a clue to novel CD133 function(s) linked to human colon cancer cell susceptibility to chemotherapy.  相似文献   

19.
Today, colon cancer is the leading cause of cancer death. In Thailand, colon cancer is the third most common cancer in men and the second in women. Currently, the treatments for colon cancer include surgery, chemotherapy, radiation therapy, immunotherapy, hormone therapy, targeted drug therapy, and stem cell therapy. However, some treatments have side effects for cancer patients, causing unwanted symptoms. In addition, targeted therapy comes with a high cost for patients. Therefore, bioactive compounds might be a good choice for colon cancer treatment. In this study, we investigated the effect of artonin E on apoptosis induction in colon cancer LoVo and HCT116 cells. The concentration ranges of artonin E at 3, 5, 10, and 30 µg/mL in LoVo cells and 1, 1.5, 2, and 3 µg/mL in HCT116 cells were examined. The results implied that artonin E decreased cell viability and increased apoptotic cells in a dose-dependent manner. In addition, artonin E stimulated mitochondrial membrane potential (ΔΨm) changes associated with apoptosis by increasing the sub-G1 population analyzed by flow cytometry. Western blotting showed that artonin E increased the proapoptotic protein, Bax, and decreased anti-apoptotic proteins’ (Bcl-2 and Bcl-x) expression. Moreover, artonin E also increased cleaved caspase-7 and cleaved-PARP expression in both LoVo and HCT116 cells. Interestingly, artonin E induced apoptosis through p-ERK1/2, p-p38/p38, and p-c-Jun expression in both cells. Our results suggested that artonin E induced apoptosis via caspase activation associated with the MAPKs signaling pathway. Therefore, artonin E might be used as a potential anticancer drug for colon cancer in the future.  相似文献   

20.
Moreollic acid, a caged-tetraprenylated xanthone from Gamboge, has been indicated as a potent antitumor molecule. In the present study, a series of moreollic acid derivatives with novel structures were designed and synthesized, and their antitumor activities were determined in multifarious cell lines. The preliminary screening results showed that all synthesized compounds selectively inhibited human colon cancer cell proliferation. TH12-10, with an IC50 of 0.83, 1.10, and 0.79 μM against HCT116, DLD1, and SW620, respectively, was selected for further antitumor mechanism studies. Results revealed that TH12-10 effectively inhibited cell proliferation by blocking cell-cycle progression from G1 to S. Besides, the apparent structure–activity relationships of target compounds were discussed. To summarize, a series of moreollic acid derivatives were discovered to possess satisfactory antitumor potentials. Among them, TH12-10 displays the highest antitumor activities against human colon cancer cells, in which the IC50 values in DLD1 and SW620 are lower than that of 5-fluorouracil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号