首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
A novel double-hydrophilic block copolymer (DHBC) poly(vinyl pyrrolidone)–block–poly(methacrylic acid) (PVP-b-PMAA) was synthesized via reversible addition–fragmentation chain transfer polymerization. The structure of the resulting copolymer was characterized by 1H nuclear magnetic resonance, and the molecular weight of the block copolymer was determined by gel permeation chromatography. The study of morphological control of calcium carbonate (CaCO3) has been performed in the presence of the PVP-b-PMAA block copolymer. Various morphologies of CaCO3 particles such as rhombohedral, multilayered, and aggregated with cavities can be produced by varying the copolymer concentrations. The all-obtained CaCO3 particles were calcite, which was confirmed by either X-ray diffraction or Fourier transform infrared spectra. Such calcium carbonate/polymer hybrids with complex morphologies may find valuable applications in biomimic mineralization.  相似文献   

2.
Studies of zirconium tungstate gels for production of 188W/188Re generators using tungsten of natural isotopic abundance irradiated in a moderate flux nuclear reactor have been carried out. Composites of WO3–ZrO2 have been synthesized by Complex Sol–Gel Process developed in INCT and other techniques. Different proportions of metal oxides and temperature were applied. Elution profiles of columns filled with gel samples irradiated in nuclear reactor have been studied using as an eluent 0.9% NaCl solution. Purity of 188Re fraction and efficiency of elution were determined. Ageing effect on elution efficiency was also examined. It was found that the best elution performance showed zirconium tungstate gel prepared in 110 °C or 500 °C in which molar ratio of metal oxides was 1:2.  相似文献   

3.
The effect of mM concentrations of K3[Fe(CN)6], Fe(III), Mo(VI), KSCN and KMnO4 on the generation of BiH3 by the reaction of 0.2–10 μg ml−1 Bi(III) with 0.2 M tetrahydroborate(III) at 1 M acidity (HCl or HNO3) was investigated. Chemical vapour generation (CVG) of BiH3 was investigated by atomic absorption spectrometry using a continuous flow reaction system (CF–CVG–AAS) and different mixing sequences and reagent reaction times. Gas chromatography–mass spectrometry (GC–MS) was employed in batch generation experiments with NaBD4. In the absence of additives, the formation of Bi0 at high concentrations of Bi(III) caused rollover of calibration curves and limited the linear range to less than 1 μg ml−1 Bi(III). In the presence of additives, the formation of Bi0 was not observed and the linear range was increased to 5 μg ml−1 of Bi(III) while rollover was completely removed. GC–MS experiments indicated that the presence of additives did not affect the direct transfer of H from boron to bismuth. Experiments with CF–CVG–AAS and different mixing sequences and reagent reaction times suggest that additives act by preventing the formation of Bi0 through the formation of reaction intermediates which evolve towards the formation of BiH3 at elevated Bi(III)/NaBH4 ratios.   相似文献   

4.
Based on the continuum dielectric model, this work has established the relationship between the solvent reorganization energy of electron transfer (ET) and the equilibrium solvation free energy. The dipole-reaction field interaction model has been proposed to describe the electrostatic solute-solvent interaction. The self-consistent reaction field (SCRF) approach has been applied to the calculation of the solvent reorganization energy in self-exchange reactions. A series of redox couples, O2/O 2, NO/NO+, O3/O 3, N3/N 3, NO2/NO+ 2, CO2/CO 2, SO2/SO 2, and ClO2/ClO 2, as well as (CH2)2C-(-CH2-) n -C(CH2)2 (n=1 ∼ 3) model systems have been investigated using ab initio calculation. For these ET systems, solvent reorganization energies have been estimated. Comparisons between our single-sphere approximation and the Marcus two-sphere model have also been made. For the inner reorganization energies of inorganic redox couples, errors are found not larger than 15% when comparing our SCRF results with those obtained from the experimental estimation. While for the (CH2)2C–(–CH2–) n –C(CH2)2 (n=1 ∼ 3) systems, the results reveal that the solvent reorganization energy strongly depends on the bridge length due to the variation of the dipole moment of the ionic solute, and that solvent reorganization energies for different systems lead to slightly different two-sphere radii. Received: 19 April 2000 / Accepted: 6 July 2000 / Published online: 27 September 2000  相似文献   

5.
Platinum catalysts supported on indium-doped alumina were prepared by the sol–gel method. The method allows the incorporation of In3+ in the alumina network. The indium-doped alumina supports showed narrow pore size distribution (5.4–4.0 nm) and high specific surface areas (258–280 m2/g). The 27Al NMR-MAS spectroscopy identified aluminum in tetrahedral, pentahedral, and octahedral coordination; however, the intensity of the signal assigned to aluminum in pentahedral coordination diminishes with the increase of the content of indium. Total acidity determined by ammonia thermodesorption diminishes strongly in Pt/In–Al2O3 catalysts, suggesting a selective deposit of platinum over the acid sites of the support. The effect of the support in the platinum catalytic activity was evaluated in the n-heptane dehydrocyclization reaction. The selectivity patterns for such reaction were modified substantially in the doped Pt/In–Al2O3 catalysts, in comparison with the Pt-In/Al2O3–I coimpregnated reference catalyst. As an important result, the formation of benzene was suppressed totally over the indium-doped alumina sol–gel supports with a high content (3 wt%) of indium.  相似文献   

6.
 Nucleophilic vinylic substitutions of 4H-pyran-4-one and 2-methyl-4H-pyran-4-one with ammonia were calculated by the B3LYP method using the 6-31G(d,p) basis set. Bulk solvent effects of aqueous solution were estimated by the polarized continuum and Poisson–Boltzmann self-consistent reaction field models using the 6-311+G(d,p) basis set. In the gas phase different mechanisms were found for the two reaction systems calculated. The reaction of 4H-pyran-4-one proceeds through enol, whereas a feasible path for the less reactive 2-methyl-4H-pyran-4-one is the mechanism through a keto intermediate. Addition of ammonia in concert with proton transfer is the rate-determining step ofthe reaction. The mechanism proceeding either by a bimolecular nucleophilic substitution (SN2) or by one involving a tetrahedral zwitterionic intermediate is shown to be unlikely in the gas phase or nonpolar solution. The effects of bulk solvent not only consist in a reduction of the various activation barriers by about 25–40 kJ mol−1 but also in a change in the reaction mechanism. Received 26 May 2002 / Accepted 26 July 2002 / Published online: 14 February 2003  相似文献   

7.
Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP–MS detection. Separation of eight arsenic species—AsIII, MMA, DMA, AsV, AB, TMAO, AC and TeMAs+—was achieved on a C18 column with isocratic elution (pH 3.0), under which conditions AsIII and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC–ICP–MS detection limits for the eight arsenic species were in the range 0.03–0.23 μg L−1 based on 3σ for the blank response (n=5). The precision was calculated to be 2.4–8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18–9.59 μg g−1. This paper was presented at the European Winter Conference 2005  相似文献   

8.
A convenient, selective and sensitive liquid chromatographic-electrospary ionization mass spectrometry (LC–ESI–MS) method was developed and validated to determine lovastatin in human plasma. The analyte was extracted from human plasma samples by typical liquid–liquid extraction, separated on a C18 column by using the mobile phase consisting of water–methanol (13:87, v/v). Simvastatin was used as the internal standard (IS). The method was linear within the range of 0.1–20 ng mL−1. The lower limit of quantification (LLOQ) was 0.1 ng mL−1. The intra- and inter-run precision, calculated from quality control (QC) samples was less than 10.2%. The accuracy as determined from QC samples was in the range of 99.3–102.9% for the analyte. The mean recoveries for lovastatin and IS were 84.8 and 88.0%, respectively. The method was successfully applied for evaluation of the pharmacokinetic of lovastatin in healthy volunteers.  相似文献   

9.
 Ab initio calculations have been performed to investigate the state transition in photoinduced electron transfer reactions between tetracyanoethylene and biphenyl as well as naphthalene. Face-to-face conformations of electron donor–acceptor (EDA) complexes were selected for this purpose. The geometries of the EDA complexes were determined by using the isolated optimized geometries of the donor and the acceptor to search for the maximum stabilization energy along the center-to-center distance. The correction of interaction energies for basis set superposition error was considered by using counterpoise methods. The ground and excited states of the EDA complexes were optimized with complete-active-space self-consistent-field calculations. The theoretical study of the ground state and excited states of the EDA complex in this work reveals that the S1 and S2 states of the EDA complexes are charge–transfer (CT) excited states, and CT absorption which corresponds to the S0→S1 and S0→S2 transitions arise from π−π* excitation. On the basis of an Onsager model, CT absorption in dichloromethane was investigated by considering the solvent reorganization energy. Detailed discussions on the excited state and on the CT absorptions were made. Received: 30 April 2001 / Accepted: 18 October 2001 / Published online: 9 January 2002  相似文献   

10.
Ni–La/SiO2 catalysts were prepared by using a new metal organic precursor M(OC3H7)n, dissolved in organic solvent, hydrolysed and finally condensed to form inorganic polymers containing M–O–M or M–(μOH)–M linkages. An optimal distribution of both the active phase ‘Ni’ and the promoter ‘La2O3’ was ensured by addition of their corresponding salts, previously dissolved in propionic acid, to a silica solution prior to gelation. After drying under vacuum the precursor was submitted to thermal treatment in air at 600°C with a heating rate of 1°C min–1. The precursors and the corresponding catalysts were characterised by various techniques (TG-DTA, XRD, FTIR, TEM, BET and porosimetry) and tested for methane dry reforming. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
 Based on the spherical cavity approximation and the Onsager model, a dipole–reaction field interaction model has been proposed to elucidate the solvent reorganization energy of electron transfer (ET). This treatment only needs the cavity radius and the solute dipole moment in the evaluation of the solvent reorganization energy, and fits spherelike systems well. As an application, the ET reaction between p-benzoquinone and its anion radical has been investigated. The inner reorganization energy has been calculated at the level of MP2/6–31+G, and the solvent reorganization energies of different conformations have been evaluated by using the self-consistent reaction field approach at the HF/6–31+G level. Discussions have been made on the cavity radii and the values are found to be reasonable when compared with the experimental ones of some analogous intramolecular ET reactions. The ET matrix element has been determined on the basis of the two-state model. The fact that the value of the ET matrix element is about 10 times larger than RT indicates that this ET reaction can be treated as an adiabatic one. By invoking the classical Marcus ET model, a value of 4.9 × 107M−1s−1 was obtained for the second-order rate constant, and it agrees quite well with the experimental one. Received: 19 October 2001 / Accepted: 17 January 2002 / Published online: 3 May 2002  相似文献   

12.
In recent years perfluorinated alkylated substances (PFAS) have appeared as a new class of global pollutant. Besides being an industrially important group of compounds, PFAS are regarded as highly toxic and extraordinarily persistent chemicals that pervasively contaminate human blood and wildlife throughout the world. They are therefore regarded as PBT (persistent, bioaccumulative, and toxic) chemicals. Two comprehensive methods have been developed for determination of eleven of the most environmentally relevant PFAS (seven perfluoroalkylcarboxylates, two perfluoroalkylsulfonates, and two perfluoroctanesulfonamides) in aqueous samples. The compounds were isolated by liquid–liquid extraction (LLE) and solid-phase extraction (SPE), and identification and quantification of the target analytes were achieved by liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS–MS). With LLE detection limits ranged from 0.26 to 0.62 ng L−1 for enrichment of 900-mL water samples; recovery of PFAS with a carbon chain longer than C7 was excellent (80–93%). With SPE, carboxylates with carbon chains <C10 could be extracted efficiently (70–98%) under acidic conditions, and PFOS and PFOSA could be extracted efficiently (81% and 96%, respectively) under basic conditions, resulting in MDLs between 0.25 and 0.64 ng L−1. The LLE method was applied successfully to Austrian wastewater effluent samples.  相似文献   

13.
A rapid, sensitive, and specific method for quantification of olmesartan, the prodrug of olmesartan medoxomil, in human plasma, using zidovudine as internal standard, is described. Sample preparation involved a simple solid-phase extraction procedure. The extract was analyzed by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry (LC–MS–MS). Chromatography was performed isocratically on a 5 μm C18 analytical column (50 mm × 4.6 mm i.d.) with water–acetonitrile–formic acid 20:80:0.1 (v/v) as mobile phase. The response to olmesartan was a linear function of concentration over the range 4.82–1,928 ng mL−1. The lower limit of quantification in plasma was 4.82 ng mL−1. The method was successfully applied in a bioequivalence study of an olmesartan formulation after administration as a single oral dose.  相似文献   

14.
A sensitive liquid chromatography–electrospray ionization–tandem mass spectrometric (LC–ESI–MS/MS) method for the determination of 25-hydroxyvitamin D3 [25(OH)D3] in human saliva has been developed and validated. The saliva was deproteinized with acetonitrile, purified using a Strata-X cartridge, derivatized with a Cookson-type reagent, 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), and subjected to LC–MS/MS. The PTAD derivative was much more easily ionized in positive-ESI–MS and efficiently produced a characteristic product ion during MS/MS, compared to the intact 25(OH)D3. Methylamine was used as the mobile phase additive, and also effectively enhanced the assay sensitivity. Quantification was based on selected reaction monitoring, and 25-hydroxyvitamin D4 was used as the internal standard. This method allowed the reproducible and accurate quantification of salivary 25(OH)D3 using a 1.0-ml sample, and the limit of quantitation for 25(OH)D3 was 2.0 pg/ml. The applicability of the developed method for clinical studies was then examined. There was a positive linear relationship (r 2 = 0.830) between the serum 25(OH)D3 level, which is conventionally used as a means of assessing the vitamin D status, and the salivary 25(OH)D3 level measured using the proposed method. The method also enabled the detection of the increase in the salivary 25(OH)D3 level after the supplementation of vitamin D3.  相似文献   

15.
16.
Organically-modified silicate-phosphate and silicate-phosphite copolymers were prepared through nonaqueous acid–base reaction. The inductive effect of the organic substituent of the starting materials such as organically-modified chlorosilane and phosphorous acid on the acid–base reaction was investigated by 31P NMR measurement and ab initio molecular orbital calculation. The condensation reaction takes place by nucleophilic addition of phosphate ion (or phosphite ion) to chlorosilane through SN2 mechanism to form silicate-phosphate (or phosphite) network. The reactivity of the acid–base pair can be controlled by changing the inductive effect of the organic substituents on the starting materials.  相似文献   

17.
The reaction between a mesylated compound and sodium azide was previously studied experimentally at a temperature of 140 °C using dimethylformamide as a solvent. The product was assigned on the basis of the analysis of the NMR spectra. In this work semiempirical (AM1 and PM3), ab initio (Hartree–Fock and MP2) and density functional theory (BLYP functional) quantum mechanical calculations, using continuum models for describing the solvent effect, were carried out for this process to better understand the reaction mechanism. Three distinct mechanisms involving a carbocation and epoxide intermediates, and a transition-state structure for direct attack of the N3 species to the reactant were investigated. The theoretically calculated preferred reaction pathway passing through an epoxide intermediate agrees nicely with the experimental proposal, providing a good example of where theoretical calculations can be of great help to definitively elucidate the reaction mechanism. Received: 10 July 2001 / Accepted: 20 December 2001 / Published online: 8 April 2002  相似文献   

18.
The photoluminescence properties of xZnO–(100−x)SiO2 (x = 0, 5, 10, 20) containing 1% Eu2O3 prepared by a sol–gel method were systematically investigated. The results indicated that the relative proportion of f–f transitions to charge transfer (CT) absorption decreased with the increase of ZnO concentration. The intensity of 5D07FJ transitions of Eu3+ ions was enhanced with the increase of ZnO content due to local structure changes and decreased quantities of Eu3+ ions clusters. The results of fluorescence line narrow (FLN) spectra indicated that Eu3+ ions occupied one site in SiO2 glass and two sites in ZnO–SiO2 glasses. The second-order crystal field parameters were calculated. B20 and B22 for site 1 increased with excitation energy, while ones hardly changed for site 2.  相似文献   

19.
A new type of oxide–salt composite electrolyte, yttrium doped ceria YDC–Ca3(PO4)2–K3PO4, was developed and demonstrated for its promising use for ammonia synthesis. Using this composite electrolyte, ammonia was synthesized from nitrogen and natural gas at atmospheric pressure in the solid-state proton conducting cell reactor, and the optimal condition for ammonia production was determined . The evolved rate of ammonia is up to 6.95×10−9 mol s−1 cm−2.  相似文献   

20.
 Addition–elimination reactions involving a nucleophile and a remote leaving group [SH N(AE)tele] are well-known under basic conditions, especially amongst electron-poor six-membered heterocycles, but are less commonly encountered for five-membered heterocycles and are rare under acidic conditions. Concentrated HCl converts 1-hydroxy-1H-pyrazolo[3,4-c] isoquinoline and 1-hydroxy-1H-pyrazolo[3,4-c]quinoline into 3-chloro-1H-pyrazolo[3,4-c]isoquinoline and 3-chloro-1H-pyrazolo[3,4-c]quinoline, respectively. However, apparently neither the isomeric 1-hydroxy-1H-pyrazolo[4,3-c](iso)-quinolines nor the parent 1-hydroxypyrazole undergo this reaction. Additionally, all these systems are refractory under basic conditions. We present a plausible mechanism for the reaction, involving the 3-addition of Cl- to the diprotonated heterocycle, followed by the elimination of water. Calculations of the initial transition states and intermediates, using optimisation at B3LYP/6-311+G(d,p), including thermochemistry [HF/6-31+G(d)], and single-point Poisson–Boltzmann self-consistent reaction field determination of the free energy of solvation (Jaguar Poisson–Boltzmann self-consistent reaction field), support this mechanism and reproduce the observed order of reactivity, the addition step being 2–4 kcal less favourable for the isomeric 1-hydroxy-1H-pyrazolo[4,3-c](iso)quinolines and provide a rationalisation for the role of strong acid. Received: 27 June 2002 / Accepted: 6 September 2002 / Published online: 14 February 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号