首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Background: The [99mTc][Tc(N)(PNP)] system, where PNP is a bisphosphinoamine, is an interesting platform for the development of tumor ‘receptor-specific’ agents. Here, we compared the reactivity and impact of three [Tc(N)(PNP)] frameworks on the stability, receptor targeting properties, biodistribution, and metabolism of the corresponding [99mTc][Tc(N)(PNP)]-tagged cRGDfK peptide to determine the best performing agent and to select the framework useful for the preparation of [99mTc][Tc(N)(PNP)]-housing molecular targeting agents. Methods: cRGDfK pentapeptide was conjugated to Cys and labeled with each [Tc(N)(PNP)] framework. Radioconjugates were assessed for their lipophilicity, stability, in vitro and in vivo targeting properties, and performance. Results: All compounds were equally synthetically accessible and easy to purify (RCY ≥ 95%). The main influences of the synthon on the targeting peptide were observed in in vitro cell binding and in vivo. Conclusions: The variation in the substituents on the phosphorus atoms of the PNP enables a fine tuning of the biological features of the radioconjugates. ws[99mTc][Tc(N)(PNP3OH)]– and [99mTc][Tc(N)(PNP3)]– are better performing synthons in terms of labeling efficiency and in vivo performance than the [99mTc][Tc(N)(PNP43)] framework and are therefore more suitable for further radiopharmaceutical purposes. Furthermore, the good labeling properties of the ws[99mTc][Tc(N)(PNP3OH)]– framework can be exploited to extend this technology to the labeling of temperature-sensitive biomolecules suitable for SPECT imaging.  相似文献   

2.
The extensive development of radiopharmaceuticals towards early tumour detection and treatment has increased the demand for new ligands with higher tumour selectivity. Research has been done on the potential of the novel O,O′‐diethylethylenediamine‐N,N′‐di‐3‐propanoate ( L ) ligand as a radionuclide vehicle for tumour targeting. Under alkaline conditions, L hydrolyses and produces half ester ligand ( L' ) and diacid ligand ( L'' ), with characteristic donor atom array N,N,O. Ligand L was successfully labelled with 99mTc at pH = 9 by coordination with the octahedral fac‐[99mTc(CO)3(H2O)3]+ intermediate, forming the main radioproduct fac‐[99mTcL′(CO)3] (Tc1). The 99mTc complex showed a low lipophilic character (log P = 0.48) and low binding affinity to human serum albumin (2.51 ± 0.48%). In vitro stability studies in saline and human plasma, as well as challenge studies with cysteine and histidine, revealed high stability of the complex during 24 h. Biodistribution studies of Tc1 in female C57BL/6 mice bearing B16/F1 melanoma metastases showed significant tumour uptake: 9.81 ± 1.19%ID g?1 in the liver, 5.87 ± 0.54%ID g?1 in the lungs and 3.17 ± 0.33%ID g?1 in the ovary at 30 min post‐injection. Favourable physicochemical properties, satisfactory in vitro/in vivo stability and biodistribution profile in the experimental metastatic melanoma model indicate the possible application of the radiolabelled ligand in tumour diagnosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The in vivo and in vitro stability of99mTc hydroxyethlylidene diphosphonate, 99mTc methylenediphosphonate and99mTc pyrophosphate in plasma has been studied using paper chromatographic technique as the analytical tool. The results indicate that the amounts of99mTc activity found both at the origin and Rf range of99mTcO4 ? for in vivo experiments are slightly greater than those for either in vitro or control experiments. However, this amount of99mTc activity represents about 0.16–0.4% of the injected dose. Therefore, it is suggested that99mTc phosphorus radiopharmaceuticals are stable in vivo and neither oxidation nor hydrolysis of these bone imaging agents occurs in the blood.  相似文献   

4.
Owing to its optimal nuclear properties, ready availability, low cost and favourable dosimetry, 99mTc continues to be the ideal radioisotope for medical‐imaging applications. Bifunctional chelators based on a tetraamine framework exhibit facile complexation with Tc(V)O2 to form monocationic species with high in vivo stability and significant hydrophilicity, which leads to favourable pharmacokinetics. The synthesis of a series of 1,4,8,11‐tetraazaundecane derivatives ( 01 – 06 ) containing different functional groups at the 6‐position for the conjugation of biomolecules and subsequent labelling with 99mTc is described herein. The chelator 01 was used as a starting material for the facile synthesis of chelators functionalised with OH ( 02 ), N3 ( 04 ) and O‐succinyl ester ( 05 ) groups. A straightforward and easy synthesis of carboxyl‐functionalised tetraamine‐based chelator 06 was achieved by using inexpensive and commercially available starting materials. Conjugation of 06 to a potent bombesin‐antagonist peptide and subsequent labelling with 99mTc afforded the radiotracer 99mTc‐N4‐BB‐ANT, with radiolabelling yields of >97 % at a specific activity of 37 GBq μmol?1. An IC50 value of (3.7±1.3) nM was obtained, which confirmed the high affinity of the conjugate to the gastrin‐releasing‐peptide receptor (GRPr). Immunofluorescence and calcium mobilisation assays confirmed the strong antagonist properties of the conjugate. In vivo pharmacokinetic studies of 99mTc‐N4‐BB‐ANT showed high and specific uptake in PC3 xenografts and in other GRPr‐positive organs. The tumour uptake was (22.5±2.6) % injected activity per gram (% IA g?1) at 1 h post injection (p.i.). and increased to (29.9±4.0) % IA g?1 at 4 h p.i. The SPECT/computed tomography (CT) images showed high tumour uptake, clear background and negligible radioactivity in the abdomen. The promising preclinical results of 99mTc‐N4‐BB‐ANT warrant its potential candidature for clinical translation.  相似文献   

5.
Bombesin is a tetradecapeptide that binds specifically to gastrin releasing peptide receptors in humans. Several forms of cancer, including lung, prostate, breast, and colon express receptors for bombesin-like peptides. Radiolabeled bombesin analogs with a high affinity for these receptors might therefore be used for scintigraphic imaging of these tumor types. A truncated bombesin derivative (HYNIC-βAla-Bombesin(7–14)) was radiolabeled with technetium-99m using EDDA and tricine as coligands. In vitro stability was evaluated in presence of plasma and excess of cysteine. The receptor-binding affinity assays was evaluated in MDA-MB-231 cancer cell line. In addition, in vivo biodistribution was performed in nude mice bearing breast tumor. In vitro assay showed a good affinity for the MDA-MB-231 cell line, showing 20.0 % of internalization at 4 h post-administration. 99mTc-HYNIC-βAla-Bombesin(7–14) biodistribution revealed a rapid clearance and a significant renal excretion. In addition, tumor uptake was higher than non-excretory organs, such as the spleen, the liver, and muscles. Tumor-to-muscle and tumor-to-blood ratios for 99mTc-HYNIC-βAla-Bombesin(7–14) showed high values at 4 h post-injection (5.34 and 4.55, respectively). Furthermore, blocked studies using cold bombesin peptide were performed, which demonstrated an important decrease in tumor uptake, indicating a tumor specificity for 99mTc-HYNIC-βAla-Bombesin(7–14). The 99mTc-HYNIC-βAla-Bombesin(7–14) displayed suitable radiochemical characteristics, and adequate affinity to breast tumor cells (MDA-MB-231). Therefore, this analog can be considered as a candidate for the identification of bombesin-positive tumors.  相似文献   

6.
An instant kit of cysteine (amino acid) to be labelled with99mTc was prepared. Optimal conditions were found, and a procedure to prepare the kit ready to use in liophilized form to gain the highest labelling yield. More than 95% labelling yield was obtained when99mTc (TcO 4 ) eluted from99mTc-generator was added to the contents of the kit. Each kit contains 0.66 mg of SnCl2·2H2O as stannite and 66 mg cysteine in lyophilized form. The formulation of cysteine tin (kit) was stable for nearly three months giving labelling yield more than 95%. Using GCS technique, different species of technetium and labelled cysteine were identified when Sephadex (G-50, G-25) was applied. Biodistribution of the labelled preparation revealed that kidney was the target organ. The ratio of accumulated dose in kidneys/liver was greater than 2.  相似文献   

7.
Shikonin was isolated from Ratanjot pigment then the obtained shikonin was well characterized. This study is aimed to optimize radiolabeling yield of shikonin with 99mTc with respect to factors that affect the reaction conditions such as shikonin amount, SnCl2·2H2O amount, reaction time and pH of the reaction mixture. In vitro stability of the radiolabeled complex was checked and it was found to be stable for up to 6?h. Biodistribution studies showed that, 99mTc?Cshikonin accumulate in tumor sites with higher T/NT than other currently available 99mTc(CO)3-VIP, 99mTc?Cnitroimidazole analogues and 99mTc?Cpolyamine analogues indicating that shikonin deliver 99mTc to the tumor sites with a percentage sufficient for imaging and can overcome many drawbacks of other radiopharmaceuticals used for tumor imaging.  相似文献   

8.
[99mTc(I)]+ and [99mTc(I)(CO)3]+ complexes with isocyanide exhibit high stability, which makes them suitable platforms to develop novel 99mTc radiopharmaceuticals. To develop novel 99mTc radiotracers for imaging hypoxia, in this study, a novel L ligand (4-nitroimidazole isocyanide derivative) was synthesized and labelled using [99mTc(I)]+ core and [99mTc(I)(CO)3]+ core to produce [99mTc(L)6]+ and [99mTc(CO)3(L)3]+ with high yields. To verify the structure of the 99mTc complexes, corresponding rhenium analogues were synthesized and characterized. Both of the 99mTc complexes were stable and hydrophilic. in vitro cellular uptake results showed they could exhibit good hypoxic selectivity. The evaluation of biodistribution in mice bearing S180 tumors indicated both of them could accumulate in tumor. Between them, [99mTc(L)6]+ exhibited higher tumor uptake and tumor/non-target ratio than [99mTc(CO)3(L)3]+. Further, single photon emission computed tomography (SPECT) imaging studies of [99mTc(L)6]+ indicated an obvious accumulation in tumor and the value of the region-of-interest (ROI) ratio of the uptake for the tumor site to the corresponding non-tumor region was 5.64 ± 0.52. The above results suggested [99mTc(L)6]+ would be a potential tracer for imaging tumor hypoxia.  相似文献   

9.
Summary The aim of this study was to label exorphin C with 99mTc and to examine its usefulness as opioid receptor binding radiopharmaceutical in Albino Wistar rats. Exorphin C, which is a peptide with 5 aminoacids, was labeled with 99mTc using glucoheptonate (GH) as a bifunctional chelating agent. Labeling efficiency was higher than 98%. The compound was stable for at least 5 hours at room temperature. Mammary tumor bearing Albino Wistar rats were imaged using gamma-camera. Biodistribution studies were also performed. Results demonstrated that 99mTc-glucoheptonate-exorphin C (99mTc-GE) analogs may be useful as a new class of receptor-binding peptides for the diagnosis and therapy of some cancer diseases related with opioid receptor-expressing tissues.  相似文献   

10.
The over-expression of folate receptors in variety of neoplastic tissues makes radiolabeled folate conjugates potential agents for imaging and therapy of such cancers. With the aim of preparing an imaging agent for targeting folate receptors, folic acid has been conjugated with homocysteine for complexation with [99mTc(CO)3(H2O)3]+ core. The radiolabeled complex of the homocysteine-folate could be obtained in >95% radiochemical yield as observed by HPLC. Stability of complex in saline was studied and challenge studies with histidine and cysteine revealed kinetic stability of the complex. Lipophilicity of the radiolabeled complex (log P) was found to be 0.45. In vitro uptake of 99mTc(CO)3-labeled folic acid derivative was studied in KB cells and inhibition studies were carried out using 3H-folic acid and cold homocysteine–folate conjugate. The in vitro studies indicated loss of binding affinity of the derivative towards folate receptors.  相似文献   

11.
Isocyanide is a strong coordination ligand that can coordinate with [99mTc(I)(CO)3]+ core and [99mTc(I)]+ core to produce stable 99mTc complexes, therefore developing a 99mTc-labeled isocyanide complex for single-photon emission computed tomography (SPECT) imaging is considered to be of great interest. In order to develop potential tumor imaging agents with satisfied tumor uptake and suitable pharmacokinetic properties in vivo, a novel d -glucosamine isocyanide derivative, 4-isocyano-N-(2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)butanamide (CN3DG), was synthesized and radiolabeled with [99mTc(I)]+ and [99mTc(CO)3]+ cores to obtain [99mTc(CN3DG)6]+ and [99mTc(CO)3(CN3DG)3]+ in high radiolabeling yields (>95%). Both of the complexes showed good hydrophilicity and great stability in vitro. Cell uptake studies performed in S180 cells demonstrated they were transported into cells by glucose transporters. Biodistribution studies of the two complexes in mice bearing S180 tumor showed they had high tumor uptakes and rapid clearance from muscle and blood so that the tumor/blood and tumor/muscle ratios were high. By comparison, [99mTc(CN3DG)6]+ was superior to [99mTc(CO)3(CN3DG)3]+ in regard to tumor uptake, tumor/blood and tumor/liver ratios. S180 tumors could be seen clearly from the SPECT/CT images with [99mTc(CN3DG)6]+. Considering its favorable properties, [99mTc(CN3DG)6]+ would be a promising tumor imaging agent and needs to be further studied.  相似文献   

12.
F(ab’)2 is the fragment involved in the immunotherapy for scorpion stings and it would be convenient to label it with 99mTc for organ distribution and pharmacokinetics studies. The aim of the present study was to label scorpion antivenom F(ab’)2 with 99mTc keeping its biological activity, integrity and stability. High labeling yield was obtained using stannous chloride and sodium borohydride. Stability, immunoreactivity and integrity of 99mTc-F(ab’)2 was preserved. It was not observed any difference between potencies of unlabeled and labeled antivenom. 99mTc-F(ab’)2 can be a useful tool for use in biodistribution and pharmacokinetics studies on the evaluation of the efficacy of the antivenom against scorpion envenomation.  相似文献   

13.
The organometallic precursor of fac-[99mTc(CO)3(H2O)3]+ has attracted much attention because of the robustness and small size of Tc(I)-tricarbonyl complexes compared to Tc(V) complexes and the good labeling affinity with a variety of donor atoms. Among various ligand systems, an iminodiacetic acid (IDA) was proven as a good chelating group to form a Tc(III)-compelx as well as has been shown its potential as a chelating system for fac-[99mTc(CO)3] precursor. In an attempt to confirm the similarity and the difference between 99mTc(CO)3-IDA and 99mTc-(IDA)2-complex, M(CO)3-IDA (M = 99mTc, Re) complexes of disofenin, mebrofenin and N-(3-iodo-2,4,6-trimethyl phenylcarbamoylmethyl) iminodiacetic acid were prepared, and the biological evaluation of 99mTc(CO)3-disofenin was performed. The 99mTc(CO)3-IDA complexes were prepared with a high radiolabeling yield (>98%) in a quantitative manner and showed a negative charge. The in vivo pharmacokinetic behavior of 99mTc(CO)3-disofenin showed a similar biological activity to 99mTc-(disofenin)2 in that those complexes were quickly cleared from the blood by the hepatocytes and excreted into the gallbladder and intestine. Accordingly, the 99mTc(CO)3-IDA derivatives of disofenin and mebrofenin might be used as hepatobiliary imaging agents. Since an IDA is a promising chelator for 99mTc-based radiopharmaceutical and the biological properties of 99mTc(CO)3-IDA derivative shows similar to that of 99mTc-complex, a biomolecule containing IDA can be freely radiolabeled with fac-[99mTc(CO)3]-precursor or 99mTc. However, the radiolabeling efficiency and the biological behavior demonstrates the favorable properties of 99mTc(CO)3-IDA compound for the development of a new imaging agent.  相似文献   

14.
S‐Alkylated cysteines are used as efficient tridentate N,O,S‐donor‐atom ligands for the fac‐[M(CO)3]+ moiety (M=99mTc or Re). Reaction of (Et4N)2[ReBr3(CO)3] ( 3 ) with the model S‐benzyl‐L ‐cysteine ( 2 ) leads to the formation of [Re( 2′ )(CO)3] ( 4 ) as the exclusive product ( 2′ =C‐terminal anion of 2 ). The tridentate nature of the alkylated cysteine in 4 was established by X‐ray crystallography. Compound 2 reacts with [99mTc(OH2)3(CO)3]+ under mild conditions (10−4 M , 50°, 30 min) to afford [99mTc( 2′ )(CO)3] ( 5 ) and represents, therefore, an efficient chelator for the labelling of biomolecules. L ‐Cysteine, S‐alkylated with a 3‐aminopropyl group (→ 7 ), was conjugated via a peptide coupling sequence with Coα‐[α‐(5,6‐dimethyl‐1H‐benzimidazolyl)]‐Coβ‐cyanocobamic b‐acid ( 6 ), the b‐acid of cyanocob(III)alamin (vitamin B12) (Scheme 3). More convenient was a one‐pot procedure with a derivative of vitamin B12 comprising a free amine group at the b‐position. This amine 15 was treated with NHS (N‐hydroxysuccinimide)‐activated 1‐iodoacetic acid 14 to introduce an I‐substituent in vitamin B12. Subsequent addition of unprotected L ‐cysteine resulted in nucleophilic displacement of the I‐atom by the S‐substituent, affording the vitamin B12 alkylated cysteine fragment 17 (Scheme 4). The procedure was quantitative and did not require purification of intermediates. Both cobalamin–cysteine conjugates could be efficiently labelled with [99mTc(OH2)3(CO)3]+ ( 1 ) under conditions identical to those of the model complex 5 . Biodistribution studies of the cobalamin conjugates in mice bearing B10‐F16 melanoma tumors showed a tumor uptake of 8.1±0.6% and 4.4±0.5% injected dose per gram of tumor tissue after 4 h and 24 h, respectively (Table 1).  相似文献   

15.
Phytochlorin [21H, 23H-Porphine-7-propanoicacid, 3-carboxy-5-(carboxymethyl)13-ethenyl-18-ethyl-7,8-dihydro-2,8,12,17-tetramethyl-,(7S,8S)] was labeled with 99mTc and the factors affecting the labeling yield of 99mTc-phytochlorin complex were studied in details. At pH 10, 99mTc-phytochlorin complex was obtained with a high radiochemical yield of 98.4 ± 0.6 % by adding 99mTc to 100 mg phytochlorin in the presence of 75 μg SnCl2·2H2O after 30 min reaction time. The molecular modeling study showed that the structure of 99mTc-phytochlorin complex presents nearly linear HO–Tc–OH unit with an angle of 179.27° and a coplanar Tc(N1N2N3N4) unit. Biodistribution of 99mTc-phytochlorin complex in tumor bearing mice showed high T/NT ratio (T/NT = 3.65 at 90 min post injection). This preclinical study showed that 99mTc-phytochlorin complex is a potential selective radiotracer for solid tumor imaging and afford it as a new radiopharmaceutical suitable to proceed through the clinical trials for tumor imaging.  相似文献   

16.
Dialysis and precipitation methods have been used to study the binding affinity of selected technetium-99m phosphorus radiopharmaceuticals to human serum proteins. The binding affinities of three different99mTc bone imaging agents were found to be inversely related to their respective clearance rates from blood in vivo. The binding order showed99mTcPPi>99mTcHEDP>99mTcMDP. The99mTc phosphorus radiopharmaceuticals were bound primarily to alpha globulins. The results suggest that the binding of99mTc phosphorus radiopharmaceuticals to human serum proteins in blood is largely determined by their affinities to the alpha globulins.  相似文献   

17.
Determination of technetium-99 in soils and radioactive wastes using ICP-MS   总被引:1,自引:0,他引:1  
Three methods have been used for the determination of 99Tc in soils and solid radioactive wastes using 99mTc as a yield monitor. In the method one and three the samples were leached in low concentrated nitric and sulphuric acid. Many contaminants were then co-precipitated with Fe(OH)3 in alkali media and Tc in the supernatant was separated using anion-exchange extraction chromatography. There were made also some studies how to improve the chemical recovery of 99mTc in the process of chromatography. In the method two the sample was ashed and then leached in 8 mol dm−3 HNO3 and after iron precipitation, technetium was separated on chromatographic column. The chemical recovery of 99mTc was optimized in the process of chromatography and leaching. Typical recoveries of technetium determined with 99mTc tracer for all these methods were in the range 39 %–87 %. The 99Tc activity was measured using proportional low-background beta detector after one week of staying to allow decay of 99mTc activity. 99Tc was also determined by the non-radiometric method using inductively coupled plasma mass spectrometer.  相似文献   

18.
This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of 99mTc(CO)3-labeled pegylated (PEG) 2-nitroimidazoles for tumor hypoxia imaging. The novel 2-nitroimidazole derivatives were successfully synthesized by conjugation of tridendate chelators to 2-nitroimidazole via PEG3 linker. Radiolabeling was performed in high yield with [99mTc(CO)3]+ core to get cationic [99mTc(CO)3(BPA-PEG3-NIM)]+, neutral [99mTc(CO)3(AOPA-PEG3-NIM)] and anionic [99mTc(CO)3(IDA-PEG3-NIM)]? respectively, all of which were hydrophilic and stable at room temperature. Biodistribution studies in tumor-bearing mice showed that 99mTc(CO)3-labeled pegylated 2-nitroimidazoles accumulated in the tumor with low uptake. 99mTc-chelate and charge had significant impact on partition coefficient, radiotracer tumor uptake and pharmacokinetic properties. The results indicate the need for synthetic modification of the parent 2-nitroimidazole derivatives and the 99mTc-chelate with a view to improve the tumor targeting efficacy and in vivo kinetic profiles.  相似文献   

19.
Radiolabeling of oxybutynin, a muscarinic acetylcholine (mACh) receptor antagonist agent with 99mTc is of considerable interest for imaging of urinary bladder. This study is aimed to optimize radiolabeling yield of oxybutynin with 99mTc using SnCl2·2H2O as a reducing agent with respect to factors that affect the reaction conditions such as oxybutynin amount, stannous chloride amount, reaction time and pH of the reaction mixture. In vitro stability of the radiolabeled complex was checked and it was found to be stable for up to 8 h. 99mTc-oxybutynin was injected via subcutaneous and intravenous administration routes into normal Sprague?CDawley rats. Biodistribution studies have revealed that 99mTc-oxybutynin exhibits high affinity and specificity for the muscarinic M3 subtype located on the smooth muscle of urinary bladder relative to the M1 and M2 subtypes of the G protein coupled receptor (GPCR) superfamily. In vivo uptake of subcutaneous 99mTc-oxybutynin in urinary bladder was 19.6 ± 0.42% ID at 0.5 h, whereas in intravenous administration route the accumulation in the urinary bladder was found to be 9.4 ± 0.31% ID at 0.5 h post injection. Administration of cold oxybutynin effectively blocked urinary bladder uptake and further confirms the high specificity of this complex for the M3 receptor.  相似文献   

20.
The folate receptor (FR) is a high affinity membrane protein which is overexpressed on a wide variety of tumor cells, but highly restricted in normal tissues. Therefore folate derivatives labeled with short living isotopes such as 99mTc (γ, t1/2 = 6 h) or 188Re (β, t1/2 = 17 h) could be used for tumor diagnosis and therapy. In this respect there is a great interest to develop organometallic technetium(I) and rhenium(I) modified folate radiopharmaceuticals. For this purpose folic acid was functionalized with a tridentate picolylamine monoacetic acid chelating system. The chelating system was selectively coupled via an aminohexane spacer to the γ- or α-carboxyl group of the glutamate moiety of folic acid to obtain the corresponding γ- or α-folate derivative or - if directly attached to pteroic acid - the pteroate derivative. The derivatives were reacted with the precursor [M(OH2)3(CO)3]+ (M = 99mTc, Re) to form uniform organometallic folate complexes under mild reaction conditions. All compounds were chemically characterized by means of NMR, MS, IR and HPLC. The determination of the IC50-values for the PAMA-γ-folate derivative (100 nM) and the corresponding organometallic rhenium complex (110 nM) proved retained receptor binding properties. The radiolabeling with [99mTc(OH2)3(CO)3]+ was achieved in excellent yield (>95%) at low ligand concentration (10−4 M). The cell binding (>45% of total activity) and internalization (>15% of total activity) of all 99mTc-complexes was very high and specificity for the FR was proved by their complete displacement with excess folic acid. The 99mTc-complexes were positively tested for their plasma stability and for the absence of binding to plasma proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号