首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Three new chiral selectors, 6-tert-butyldimethylsilyl-2,3-diethyl-a-cyclodextrin, 6-tert-butyldimethylsilyl-2,3-diethyl- and dipropyl-β-cyclodextrin (TBDE-α-CD, TBDE-β-CD, TBDP-β-CD) were synthesized and tested as chiral stationary phases in capillary gas chromatography. TBDE-β-CD in particular showed a high enan-tioselectivity for test chiral compounds due to good solubility in a polar polysiloxane (OV-1701). Enantioselectivity obtained with TBDE-β-CD was compared with that of 6-tert-butyldimethylsilyl-2,3-di-O-methyl-β-cyclodextrin (TBDM-β-CD). Better enantiose-lectivity was obtained with TBDE-P-CD than with TBDM-β-CD for the test chiral compounds studied. This is probably due to greater effect of the increased hydrophobicity of TBDE-β-CD which favors inclusion of the analytes than the effect of increased steric hindrance. With TBDP-β-CD the less polar lactones are well separated due most likely to increased hydrophobicity of the propyl groups while the more polar are not well resolved. For TBDP-β-CD it is likely that the unfavorable steric hindrance is predominant over the favorable hydrophobicity of the propyl groups, thus hindering the formation of inclusion complexes of the alcohols with TBDP-β-CD. TBDE-α-CD was also a valuable chiral selector for the separation of small chiral molecules such as simple secondary alcohols and nitro-substituted alcohols.  相似文献   

2.
The enantiomer migration order (EMO) of ephedrine was investigated in the presence of various CDs in CE. The molecular mechanisms of chiral recognition were followed for the ephedrine complexes with native α- and β-CD and heptakis(2,3-di-O-acetyl-6-O-sulfo)-β-CD (HDAS-β-CD) by CE, NMR spectroscopy and high-resolution MS. Minor structural differences were observed between the complexes of ephedrine with α- and β-CD although the migration order of enantiomers was opposite when these two CDs were applied as chiral selectors in CE. The EMO was also opposite between β-CD and HDAS-β-CD. Significant structural differences were observed between ephedrine complexes with the native CDs and HDAS-β-CD. The latter CD was advantageous as chiral CE selector not only due to its opposite electrophoretic mobility compared with that of the cationic chiral analyte, but also primarily due to its enhanced chiral recognition ability towards the enantiomers of ephedrine.  相似文献   

3.
Li X  Zhou Z  Zhou W  Dai L  Li Z 《The Analyst》2011,136(23):5017-5024
A novel cyclodextrin (CD) derivative, mono-6-deoxy-benzimide-β-CD (MB-β-CD), in which a rigid substituent was linked to the narrow edge of the CD with a flexible H(2)C-N group, was successfully synthesized through the condensation of mono-6-deoxy-6-amino-β-cyclodextrin and benzaldehyde. To evaluate its enantioseparation abilities and investigate the role of the CD substituents and linkage in chiral recognition, MB-β-CD and mono-6-deoxyphenylimine-β-CD (MP-β-CD) with a rigid linkage were compared in the separation of 36 chiral compounds in a methanol/water mobile phase. The separation results showed that most of the analytes with rigid structures afforded better enantioresolutions on the MP-β-CD (with a rigid linkage) chiral stationary phase (CSP), while better enantioseparations for analytes with flexible structures and big steric hindrance were obtained on the MB-β-CD (with a flexible linkage) CSP. The former exhibited a specificity for the analyte structures, while the latter was more adaptable. Molecular dynamics simulations were performed to further understand the discrimination process and the function of the CD side arm.  相似文献   

4.
Capillary zone electrophoresis was used for the enantiomeric separation of six β-blocking drug substances with β-cyclodextrin (β-CD) and its derivatives as chiral selectors employing an uncoated capillary. The effects of pH value and composition of the background electrolyte (BGE), the capillary temperature and running voltage have been investigated. The results showed that β-CD type, concentration and pH value have a strong influence on the efficiency of the chiral separation. Carboxymethyl-β-cyclodextrin (CM-β-CD) gave a baseline enantiomeric separation for six β-blocking drug substances under optimal conditions, whereas the β-CD, hydroxypropyl-β-cyclodextrin (HP-β-CD) showed no chiral recognition. The potential and capillary temperature did not have a great effect on enantiomer resolution.  相似文献   

5.
《Analytical letters》2012,45(6):1147-1165
ABSTRACT

Chiral separation of peptides is of interest because of the different biological activity of enantiomers. In this report, several underivatized dipeptides with benzene moieties were optically resolved by employing carboxymethyl-β-cyclodextrin polymer(CM-β-CD polymer) as chiral selector. The effects of different cyclodextrin types, selector concentration, buffer pH, and organic additive were examined. Selector concentration and buffer pH played significant roles in resolution. Enantioseparation was found to be negatively influenced by adding the organic additive into running buffer and even completely lost at the organic additive content of 16%. It was also noted that the dipeptides with short chain in the vicinity of the second chiral carbon atom showed better chiral resolution by using CM-β-CD polymer than by using either carboxyethyl-β-CD or succinylated-β-CD. Simultaneous chiral separation of a mixture of DL-Ala-DL-Phe and DL-Leu-DL-Phe was also obtained using 27 mg/ml CM-β-CD polymer in the running buffer at pH5.12.  相似文献   

6.
In this study, the enantiomer migration order (EMO) of norephedrine (NEP) in the presence of various CDs was investigated by CE. NMR and CE techniques were used to analyze the mechanism of the chiral recognition between NEP enantiomers and four CDs, i.e., native α-CD, β-CD, heptakis(2,3-di-O-acetyl-6-O-sulfo)-β-CD (HDAS-β-CD), and heptakis(2,3-di-O-methyl-6-O-sulfo)-β-CD (HDMS-β-CD). EMO was reversed in the presence of α-CD and β-CD, although only minor differences in the structures of the complexes formed between NEP and these CDs could be derived from rotating frame nuclear Overhauser experiments (ROESY). The complexes between the enantiomers of NEP and the sulfated CDs, HDMS-β-CD, and HDAS-β-CD, were substantially different. However, EMO of NEP was identical in the presence of these CDs. HDAS-β-CD proved to be the most suitable chiral selector for the CE enantioseparation of NEP.  相似文献   

7.
制备了一种新的β-环糊精衍生物固定相2,6-二-O-戊基-3-O-[(甲基)5(烯丙基)2]-β-CD,并对其气相色谱分离性能进行研究。实验显示,该固定相具有良好的柱表面性能和较强的色谱分离能力,对一些芳香族位置异构体的分离能力优于2,6-二-O-戊基-3-O-烯丙基-β-CD衍生物,对10余种手性物质显示出较好的选择性能,且对α-位取代的丙酸酯类手性分离效果明显优于杂环类β-CD衍生物。与2,6-二-O-戊基-3-O-烯丙基-β-CD固定相的分离性能比较表明,β-CD 3位羟基部分甲基基团的引入能增强对芳香族位置异构体的选择能力,但不能明显改变烯丙基衍生物的手性分离能力。  相似文献   

8.
研究了7种新型三唑类抗真菌活性化合物的毛细管电泳法手性分离,利用计算机辅助分子模拟技术研究拆分机理。考察了8种中性环糊精手性添加剂,只有2,6-二甲基-β-环糊精对7种活性化合物都有手性识别能力。在30mmol/L NaH2PO4缓冲液中含2,6-二甲基-β-环糊精30mmol/L,用H3PO4调至pH 2.2,温度20℃,电压20kV,在此条件下7种活性化合物都能达到手性分离,其中4种活性化合物能达到基线分离(Rs>1.5)。应用计算机辅助分子模拟软件Discovery Studio 2.5/Sybyl/Gold模拟2,6-二甲基-β-环糊精与7种活性化合物主客体包结过程,并计算相互结合能,探讨手性识别机理,发现拆分结果与结合能的差异有关,结合能差异越大拆分结果越好。  相似文献   

9.
应用环糊精-毛细管区带电泳体系对手性药物盐酸美西律和盐酸异博定的对映体分离进行了研究。结果表明, 在所研究的手性选择剂α-环糊精, β-环糊精, 二甲基-β-环糊精, 羟丙基β-环糊精和γ-环糊精中, 羟丙基β-环糊精对所研究的手性药物分离效果较好。对盐酸美西律和盐酸异博定的最佳羟丙基-β-环糊精浓度分别为30mmol/L和9mmol/L, 最佳缓冲溶液浓度为100mmol/L Tris-H3PO4(pH2.3)。向缓冲溶液中加入0.05%羟丙基纤维素(HPLC)可改善分离。盐酸美西律获得了接近基线的手性分离, 而盐酸异博定亦获得了较好的分离。  相似文献   

10.
IntroductionChaedcyclodextrlnswerefirstIntroducedby几rabelforchlralseparationofamlnoacids,andthechargedCDcommonlyusednowdaysarecarboxymethyl-p-CD(CM-p-CD),p-CD-phosphate,Y-CD-phosphate,sulfobutylether-p-cyclodextrln(SBE-p-CD)etc....  相似文献   

11.
高效液相色谱手性流动相添加剂分离乳酸对映体   总被引:16,自引:0,他引:16  
分别将β-环糊精、2,6-二甲基-β-环瑚精和2,3,6-三甲基-β-环糊精作为手性流动相添加剂,系统地研究了D,L-乳酸在反相HPLC系统中的拆分,考察了流动相种类,pH值和手性流动相添加剂的浓度对手性分离的影响,建立了甲基化β-环糊精动态手性固定相分离乳酸对映体的方法。  相似文献   

12.
Direct capillary zone electrophoretic methods were developed for the separation of the enantiomers of unnatural β-substituted tryptophan analogues such as erythro- and threo-β-methyl-, β-2-propyl-, β-3-pentyl-, β-phenyl- and β-2,5-dimethoxyphenyltryptophan. Cyclodextrins (CDs) were chosen as chiral selectors because of their favorable properties (stability, commercial availability, low cost, UV transparency, inertness, etc.). Capillary zone electrophoresis was carried out using sulfopropylated-α-CD (SP2-α-CD), sulfopropylated-β-CD (SP2-β-CD) both with a degree of substitution of 2 moles/mole cyclodextrin, and sulfopropylated-β-CD (SP4-β-CD) with a degree of substitution of 4 moles/mole β-cyclodextrin. With this technique all compounds investigated are baseline resolved using different background electrolytes and chiral additives. The elution sequence was determined in all cases.  相似文献   

13.
《Tetrahedron: Asymmetry》2007,18(20):2399-2408
This paper reports a new chiral separation technology—biphasic recognition chiral extraction for the separation of aromatic acid enantiomers such as α-cyclohexyl-mandelic acid (CHMA) and naproxen (NAP). The biphasic recognition chiral extraction system was established by adding hydrophobic d(l)-isobutyl tartrate in 1,2-dichloroethane organic phase and hydrophilic β-cyclodextrin (β-CD) derivative in aqueous phase, which preferentially recognize the (R)-enantiomer and (S)-enantiomer, respectively. These studies involve an enantioselective extraction in a biphasic system, where aromatic acid enantiomers form complexes with the β-cyclodextrin derivative in the aqueous phase and d(l)-isobutyl tartrate in the organic phase, respectively. Factors affecting the extraction mechanism are analyzed, namely the influence of the concentrations of the extractants and aromatic acid enantiomers, the types of the extractants, pH, and temperature. The experimental results show that the biphasic recognition chiral extraction is of much stronger chiral separation ability than the monophasic recognition chiral extraction, which utilizes the cooperations of the forces of the tartrate and the β-CD derivative. Hydroxypropyl-β-cyclodextrin (HP-β-CD), hydroxyethyl-β-cyclodextrin (HE-β-CD), and methyl-β-cyclodextrin (ME-β-CD) have stronger recognition abilities for the (S)-aromatic acid enantiomers than those for (R)-aromatic acid enantiomers, among which HP-β-CD has the strongest ability. d-Isobutyl tartrate preferentially recognizes (R)-CHMA and (S)-NAP, while l-isobutyl tartrate preferentially recognizes (S)-CHMA and (R)-NAP. The maximum enantioselectivities of CHMA and NAP are 2.49 and 1.65, under conditions at which the pH values of the aqueous phases are 2.7 and 2.5, at the ratio of 2:1 of [isobutyl tartrate] to [HP-β-CD].  相似文献   

14.
Na N  Hu Y  Ouyang J  Baeyens WR  Delanghe JR  Taes YE  Xie M  Chen H  Yang Y 《Talanta》2006,69(4):866-872
A new strategy for chiral separation by capillary electrophoresis employing modified-nanoparticles as chiral selector is described for clenbuterol analysis. Nanoparticles modified with β-cyclodextrin (β-CD) form a large surface area platform to serve as a pseudostationary chiral phase, which can be applied for the enhancement of the enantioseparation. The application of four kinds of nanoparticles was investigated (multi-walled nanotubes (MWNTs), polystyrene (PS), TiO2 and Al2O3) modified with single layer β-CD as chiral selector in the enantioseparation of clenbuterol by capillary electrophoresis (CE). Successful clenbuterol enantioseparation could be achieved with the β-CD-modified MWNTs as chiral selector. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) confirmed the β-CD modification of the nanoparticles. The effects of nanoparticles, surfactant, chiral selector (β-CD) and run buffer were studied in relation to the enantiomeric separation of clenbuterol. This study opens attractive perspectives for the use of modified nanoparticles for chiral separational purposes in CE.  相似文献   

15.
以酚酞作为光谱探针 ,采用紫外 可见光谱滴定法测定了 β 环糊精 (β CD)、单 (6 氧 α 麦芽糖 ) β 环糊精 (6 G2 β CD )和单 [2 氧 (2 羟丙基 ) ] β 环糊精 (2 HP β CD )在 2 5℃时 ,pH =10 5缓冲液中(0 0 2 5mol/L)与几种脂肪族手性客体分子所形成超分子配合物的稳定常数 .结果表明 ,多种弱相互作用力协同作用于环糊精的配位过程 ,主 客体间的尺寸匹配决定所形成配合物的稳定性 .环糊精衍生物的取代基影响主体的配位能力 ,对于尺寸较小的客体分子配位能力的大小一般为 2 HP β CD >β CD >6 G2 β CD .另一方面 ,3种环糊精主体化合物对一些脂肪族客体分子也表现出一定的手性识别能力 ,对 (+ ) 异构体给出相对较强的键合能力 ,其中 ,2 HP β CD对 (+ ) /(- ) 樟脑的配位选择性为 1 2 5 .  相似文献   

16.
We describe the use of polystyrene (PS) nanoparticles to manipulate chiral selectivity of propranolol analysis by capillary electrophoresis, by dispersing PS nanoparticles into the run buffer employing hydroxypropyl-β-cyclodextrin (HP-β-CD) as chiral selector. Distinct separational differences are observed between the buffer containing PS nanoparticles and buffer without, when changing separating conditions including PS nanoparticles concentration, pH, buffer concentration, HP-β-CD concentration and when adding an organic additive. Selectivity improvements are reflected by changes in the observed mobility as a result of interactions between the propranolol enantiomers and HP-β-CD governing the absorption process on the PS particles surface. The presence of PS nanoparticles increases the enantioseparation at low particle concentration in the presence of HP-β-CD as a chiral selector.  相似文献   

17.
《Analytical letters》2012,45(11):2041-2048
Abstract

Compared with β-Cyclodextrin (β-CD), 2-O-[(R)-2-hydroxypropyl]-β-CD (A) is more sensitive for chiral recognition. When (A) was used as the chiral mobile phase additive, some racemic amino acids were directly separated on silica gel TLC for the first time.  相似文献   

18.
A buffer system of borate with charged (carboxymethyl-β-CD) and uncharged (β-CD) cyclodextrins (CDs) was employed in the chiral resolution and separation of propranolol and its selected major metabolites. By appropriate choice of buffer and additive conditions, chiral resolution of all of the compounds studied was achieved in a single analysis, where near baseline resolution was found for the difficult to resolve propranolol-glycol (Pr-glycol). This has not been observed in previous studies of propranolol and its metabolites.  相似文献   

19.
Chiral separation method development is usually very time-consuming due to the diversity in chemical structures of pharmaceutical drug substances as well as the suitable separation conditions and the problem to choose the appropriate chiral selector. This paper shows capillary zone electrophoresis (CZE) which was developed for chiral separation of a basic compound - rivastigmine (RIV) using 30 cm × 50 μm i.d. polyacrylamide (PAA)-coated fused-silica capillary (effective length 20 cm), amine-modified phosphate buffer of pH 2.5 and sulfated-β-CD (S-β-CD) as chiral selector. Other selected native or derivatized cyclodextrins (CDs) were also tested: β-CD (5, 30 mM), carboxymethyl-β-CD (5, 30 mM), dimethyl-β-CD (15 mM), hydroxypropyl-β-CD (5, 30 mM), hydroxypropyl-α-CD (5, 30 mM) and hydroxypropyl-γ-CD (5, 30 mM). Complete enantiomeric separation of RIV was achieved at 20 kV, 18 °C and detection at 200 nm within 8 min with R.S.D. for the absolute migration time reproducibility of less than 2.1%. Rectilinear calibration range was 5.0-500.0 μM of each enantiomer (r = 0.9994-0.9995). The CZE method proposed was used for the control of chiral purity of pharmaceutically active S-RIV and for the analysis of Exelon caps preparation.  相似文献   

20.
制备了β-环糊精-6-单取代氨乙基氨丙基三甲氧基硅烷手性单体(β-CD siloxane),以该手性单体和1,2-双(三乙氧基硅基)乙烷(BTEE)为硅源,十六烷基三甲基溴化铵(CTAB)为模板,采用水热合成法直接制得孔道中含有环糊精的手性介孔材料。 再对该产物进行苯基异氰酸酯化得到杂合β-环糊精的有机-无机介孔分离材料(β-CD PMOs)。 在正相HPLC及反相HPLC条件下,分别考察该填料柱对常见含氮碱性药物对映体的拆分效果。 结果表明,不管在反相或正相分离模式下,采用常见的流动相在pH=4.15条件实现了11个碱性药物的手性分离,手性选择因子(α)最高可达2.42。 孔道中直接杂合β-环糊精的手性固定相制备方法简便、快速和成本低,进一步优化成孔条件后有一定应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号