首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The metal-ligand bonds of the title compounds have been investigated with the help of an energy partitioning analysis at the DFT level. It was found that the attractive orbital interactions between Fe and ER in (CO)(4)Fe-ER arise mainly from Fe <-- ER sigma donation. Only the boron diyl complexes (CO)(4)Fe-BR have significant contributions by Fe --> ER pi back-donation, but the Fe <-- BR sigma-donation remains the dominant orbital interaction term. The relative contributions of Fe-ER sigma donation and pi back-donation are only slightly altered when R changes from a good pi donor to a poor pi donor. Electrostatic forces between the metal fragment and the diyl ligand are always attractive, and they are very strong. They arise from the attraction between the local negative charge concentration at the overall positively charged donor atom E of the Lewis base ER and the positive charge of the iron nucleus. Electrostatic interactions and covalent interactions in (CO)(4)Fe-ER complexes have a similar strength when E is Al--Tl and when R is a good pi donor substituent. The Fe-BR bonds of the boron carbonyldiyl complexes have a significantly higher ionic character than the heavier group-13 analogues. Weak pi donor substituents R enhance the ionic character of the (CO)(4)Fe-ER bond. The metal-ligand bonds in the homoleptic complexes Fe(EMe)(5) and Ni(EMe)(4) have a higher ionic character than in (CO)(4)Fe-ER. The contribution of the TM --> ER pi back-donation to the Delta E(orb) term becomes clearly higher and contributes significantly to the total orbital interactions in the homoleptic complexes where no other pi acceptor ligands are present. The ligand BMe is nearly as strong a pi acceptor in Fe(BMe)(5) as CO is in Fe(CO)(5).  相似文献   

2.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

3.
The reaction of Cp*Ru(P ( i )Pr 3)Cl with MesBH 2 (Mes = 2,4,6-trimethylphenyl), followed by chloride abstraction with LiB(C 6F 5) 4.2.5OEt 2 (LiBF 20), afforded the crystallographically characterized complex [Cp*Ru(P ( i )Pr 3)(BH 2Mes)] (+)B(C 6F 5) 4 (-); notably, this represents the first reported cationic complex to feature an eta (2)-BH monoborane ligand, as well as a rare example of bis(eta (2)-BH) ligation.  相似文献   

4.
The solution structures of a number of trans-RuH(eta(1)-BH(4))[(S)-tolbinap](1,2-diamine) precatalysts [TolBINAP = 2,2'-bis(di-4-tolylphosphino)-1,1'-binaphthyl; 1,2-diamine==(S,S)- or (R,R)-1,2-diphenylethylenediamine (DPEN), ethylenediamine (EN), and (S)-1,1-di(4-anisyl)-2-isopropylethylenediamine (DAIPEN)] have been determined using 2D NMR ((1)H--(1)H DQF-COSY, (1)H--(13)C HMQC, (1)H--(31)P HSQC, and (1)H--(15)N HSQC), and a double-pulsed field-gradient spin-echo (DPFGSE) NOE technique. All the octahedral Ru complexes adopt a trans configuration with respect to the BH(4) and hydride ligands. Amine protons of trans-RuH(eta(1)-BH(4))[(S)-tolbinap](1,2-diamine) complexes undergo H/D exchange in (CD(3))(2)CDOD. This inherent high acidity, coupled with the lability and chemical properties of the BH(4) ligand, allows for precatalyst activation without the need for an added base, in contrast to trans-RuCl(2)[(S)-tolbinap](1,2-diamine) precatalysts, which require a strong base for generation of a catalytic species. The H/BH(4) complex in a 2-propanol solution is converted to catalytically active [trans-RuH{(S)-tolbinap}{(S,S)-dpen}(ROH)](+) [(RO)(ROH)(n)](-) (R = (CH(3))(2)CH), a loosely associated ion pair of the discrete (solvated) cationic fragment and anionic species.  相似文献   

5.
Quantum chemical calculations using DFT (BP86, M05-2X) and ab initio methods (CCSD(T), SCS-MP2) have been carried out on the borylene complexes (BH)L(2) and nitrogen cation complexes (N(+))L(2) with the ligands L=CO, N(2), PPh(3), NHC(Me), CAAC, and CAAC(model). The results are compared with those obtained for the isoelectronic carbones CL(2). The geometries and bond dissociation energies of the ligands, the proton affinities, and adducts with the Lewis acids BH(3) and AuCl were calculated. The nature of the bonding has been analyzed with charge and energy partitioning methods. The calculated borylene complexes (BH)L(2) have trigonal planar coordinated boron atoms which possess rather short B-L bonds. The calculated bond dissociation energies (BDEs) of the ligands for complexes where L is a carbene (NHC or CAAC) are very large (D(e) =141.6-177.3 kcal mol(-1)) which suggest that such species might become isolated in a condensed phase. The borylene complexes (BH)(PPh(3))(2) and (BH)(CO)(2) have intermediate bond strengths (D(e) =90.1 and 92.6 kcal mol(-1)). Substituted homologues with bulky groups at boron which protect the boron atom from electrophilic attack might also be stable enough to become isolated. The BDE of (BH)(N(2))(2) is much smaller (D(e) =31.9 kcal mol(-1)), but could become observable in a low-temperature matrix. The proton affinities of the borylene complexes are very large, particularly for the bulky adducts with L=PPh(3), NHC(Me), CAAC(model) and CAAC and thus, they are superbases. All (BH)L(2) molecules bind strongly AuCl either η(1) (L=N(2), PPh(3), NHC(Me), CAAC) or η(2) (L=CO, CAAC(model)). The BDEs of H(3)B-(BH)L(2) adducts which possess a hitherto unknown boron→boron donor-acceptor bond are smaller than for the AuCl complexes. The strongest bonded BH(3) adduct that might be isolable is (BH)(PPh(3))(2)-BH(3) (D(e) =36.2 kcal mol(-1)). The analysis of the bonding situation reveals that (BH)-L(2) bonding comes mainly from the orbital interactions which has three major contributions, that is, the donation from the symmetric (σ) and antisymmetric (π(||)) combination of the ligand lone-pair orbitals into the vacant MOs of BH L→(BH)←L and the L←(BH)→L π backdonation from the boron lone-pair orbital. The nitrogen cation complexes (N(+))L(2) have strongly bent L-N-L geometries, in which the calculated bending angle varies between 113.9° (L=N(2)) and 146.9° (L=CAAC). The BDEs for (N(+))L(2) are much larger than those of the borylene complexes. The carbene ligands NHC and CAAC but also the phosphane ligands PPh(3) bind very strongly between D(e) =358.4 kcal mol(-1) (L=PPh(3)) and D(e) =412.5 kcal mol(-1) (L=CAAC(model)). The proton affinities (PA) of (N(+))L(2) are much smaller and they bind AuCl and BH(3) less strongly compared with (BH)L(2). However, the PAs (N(+))L(2) for complexes with bulky ligands L are still between 139.9 kcal mol(-1) (L=CAAC(model)) and 168.5 kcal mol(-1) (L=CAAC). The analysis of the (N(+))-L(2) bonding situation reveals that the binding interactions come mainly from the L→(N(+))←L donation while L←(N(+) )→L π backdonation is rather weak.  相似文献   

6.
The influences of R, the alpha-diimine, and the transition metal M on the excited-state properties of the complexes [M(SnR3)2(CO)2(alpha-diimine)] (M = Ru, Os; R = Ph, Me) have been investigated. Various synthetic routes were used to prepare the complexes, which all possess an intense sigma-bond-to-ligand charge-transfer transition in the visible region between a sigma(Sn-M-Sn) and a pi*(alpha-diimine) orbital. The resonance Raman spectra show that many bonds are only weakly affected by this transition. The room-temperature time-resolved absorption spectra of [M(SnR3)2(CO)2(dmb)] (M = Ru, Os; R = Me, Ph; dmb = 4,4'-dimethyl-2,2'-bipyridine) show the absorptions of the radical anion of dmb, in line with the SBLCT character of the lowest excited state. The excited-state lifetimes at room temperature vary between 0.5 and 3.6 microseconds and are mainly determined by the photolability of the complexes. All complexes are photostable in a glass at 80 K, under which conditions they emit with very long lifetimes. The extremely long emission lifetimes (e.g., tau = 1.1 ms for [Ru(SnPh3)2(CO)2(dmb)]) are about a thousand times longer than those of the 3MLCT states of the [Ru(Cl)(Me)(CO)2(alpha-diimine)] complexes. This is due to the weak distortion of the former complexes in their 3SBLCT states as seen from the very small Stokes shifts. Remarkably, replacement of Ru by Os hardly influences the absorption and emission energies of these complexes; yet the emission lifetime is shortened because of an increase of spin-orbit coupling. The quantum yield of emission at 80 K is 1-5% for these complexes, which is lower than might be expected on the basis of their slow nonradiative decay.  相似文献   

7.
The reactivity of amidinato complexes of molybdenum and tungsten bearing pyridine as a labile ligand, [M(eta(3)-allyl)(eta(2)-amidinato)(CO)(2)(pyridine)](M = Mo; 1-Mo, M = W; 1-W), toward bidentate ligands such as 1,10-phenanthroline (phen) and 1,2-bis(diphenylphosphino)ethane (dppe) was investigated. The reaction of 1 with phen at ambient temperature resulted in the formation of monodentate amidinato complexes, [M(eta(3)-allyl)(eta(1)-amidinato)(CO)(2)(eta(2)-phen)](M = Mo; 2-Mo, M = W; 2-W), which has pseudo-octahedral geometry with the amidinato ligand coordinated to the metal in an eta(1)-fashion. The phen ligand was located coplanar with two CO ligands and the eta(1)-amidinato ligand was positioned trans to the eta(3)-allyl ligand. In solution, both complexes 2-Mo and 2-W showed fluxionality, and complex 2-Mo afforded allylamidine (3) on heating in solution. In the reaction of 1 with dppe at ambient temperature, the simple substitution reaction took place to give dppe-bridged binuclear complexes [{M(eta(3)-allyl)(eta(2)-amidinato)(CO)(2)}(2)(mu-dppe)](M = Mo; 5-Mo, M = W; 5-W), whereas mononuclear monocarbonyl complexes [M(eta(3)-allyl)(eta(2)-amidinato)(CO)(eta(2)-dppe)](M = Mo; 6-Mo, M = W; 6-W) were obtained under acetonitrile- or toluene-refluxing conditions. Mononuclear complex 6 was also obtained by the reaction of binuclear complex 5 with 0.5 equivalents of dppe under refluxing in acetonitrile or in toluene. The X-ray analyses and variable-temperature (31)P NMR spectroscopy of complex 6 indicated the existence of the rotational isomers of the eta(3)-allyl ligand, i.e., endo and exo forms, with respect to the carbonyl ligand. The different reactivity of complex 1 toward phen and dppe seems to have come from the difference in the pi-acceptability of each bidentate ligand.  相似文献   

8.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

9.
Density functional theory studies of the series of isomeric d(6) (pentacarbonyl)metal complexes (CO)(5)M(eta(1)-SO(2))(nq), (CO)(5)M(eta(1)-OSO)(nq)(), and (CO)(5)M(eta(2)-SO(2))(nq) (M = Ti-Hf, nq = 2-; M = V-Ta, nq = 1-; M = Cr -W, nq = 0; M = Mn-Re, nq = 1+; M = Fe-Os, nq = 2+) provide accurate structural modeling and quantitative prediction of the relative stabilities of the isomers. The eta(1)-S-bound complexes display planar SO(2) moieties that adopt staggered orientations with respect to the carbonyl ligands, in keeping with experimental observations. The OSO chain in the eta(1)-O-bound complexes generally adopts the u-shape with a staggered orientation. The dianions (CO)(5)(Ti-Hf)(eta(1)-OSO)(2-) differ in that the OSO chain adopts the eclipsed z-shape orientation. The eta(2)-SO(2) complexes exhibit a facial interaction and are stable only for anionic and neutral complexes, supporting the view that this motif involves substantial M --> SO(2) pi-back-bonding. The relative stabilities of the isomers generally follow u-shaped trends both across a row and down a family. This fits with qualitative ideas that the bond dissociation energies (BDEs) for the (CO)(5)M(SO(2))(nq) complexes track competition between relative hardness/softness of the metal fragment and its capacity for pi-back-bonding. Quantitatively, examination of BDEs by bond energy decomposition approaches suggests that electrostatic considerations dominate bonding for the eta(1)-SO(2) complexes and covalent effects dominate for the eta(2)-SO(2) species, while both are important for eta(1)-OSO complexes.  相似文献   

10.
Reaction of (eta5-Cp)(CO)2M=P=C(SiMe3)2 4a (M = Mo) and 4b (M = W) with (eta5-Cp*)(CO)2Fe-As=C(NMe2)2 5 affords the eta3-1-arsa-2-phosphaallyl complexes [(eta5-Cp*)(CO)2Fe-AsPC(SiMe3)2]M(CO)2(eta5-Cp) 6a and 6b, the molecular structures of which were determined by X-ray analyses.  相似文献   

11.
Reduction of [(triphos)NiCl2] (1) with an excess of NaBH4 in THF produces the paramagnetic Ni(I) complex [(triphos)Ni(eta2-BH4)] (2). X-ray crystallography shows 1 to be a square-planar Ni(II) species in which the phosphine ligand is bidentate, whereas 2 has pseudotetrahedral geometry at the Ni(I) center, with a tridentate phosphine and the borohydride ligand occupying a single coordination site. Density functional theory calculations show the unpaired electron in 2 to reside in an orbital located mainly on the Ni atom.  相似文献   

12.
Chromium and ruthenium complexes of the chelating phosphine borane H(3)B.dppm are reported. Addition of H(3)B.dppm to [Cr(CO)(4)(nbd)](nbd = norbornadiene) affords [Cr(CO)(4)(eta1-H(3)B.dppm)] in which the borane is linked to the metal through a single B-H-Cr interaction. Addition of H(3)B.dppm to [CpRu(PR(3))(NCMe)(2)](+)(Cp =eta5)-C(5)H(5)) results in [CpRu(PR(3))(eta1-H(3)B.dppm)][PF(6)](R = Me, OMe) which also show a single B-H-Ru interaction. Reaction with [CpRu(NCMe)(3)](+) only resulted in a mixture of products. In contrast, with [Cp*Ru(NCMe)(3)](+)(Cp*=eta5)-C(5)Me(5)) a single product is isolated in high yield: [Cp*Ru(eta2-H(3)B.dppm)][PF(6)]. This complex shows two B-H-Ru interactions. Reaction with L = PMe(3) or CO breaks one of these and the complexes [Cp*Ru(L)(eta1-H(3)B.dppm)][PF(6)] are formed in good yield. With L = MeCN an equilibrium is established between [Cp*Ru(eta2-H(3)B.dppm)][PF(6)] and the acetonitrile adduct. [Cp*Ru (eta2-H(3)B.dppm)][PF(6)] can be considered as being "operationally unsaturated", effectively acting as a source of 16-electron [Cp*Ru (eta1-H(3)B.dppm)][PF(6)]. All the new compounds (apart from the CO and MeCN adducts) have been characterised by X-ray crystallography. The solid-state structure of H(3)B.dppm is also reported.  相似文献   

13.
The two clusters [8,8-(eta(2)-dppm)-8-(eta(1)-dppm)-nido-8,7-RhSB(9)H(10)] (1) and [9,9-(eta(2)-dppm)-9-(eta(1)-dppm)-nido-9,7,8-RhC(2)B(8)H(11)] (2) (dppm = PPh(2)CH(2)PPh(2)), both of which contain pendant PPh(2) groups, react with BH(3).thf to afford the species [8,8-eta(2)-(eta(2)-(BH(3)).dppm)-nido-8,7-RhSB(9)H(10)] (3) and [9,9-eta(2)-(eta(2)-(BH(3)).dppm))-nido-9,7,8-RhC(2)B(8)H(11)] (4), respectively. These two species are very similar in that they both contain the bidentate ligand [(BH(3)).dppm], which coordinates to the Rh center via a PPh(2) group and also via a eta(2)-BH(3) group. Thus, the B atom in the BH(3) group is four-coordinate, bonded to Rh by two bridging hydrogen atoms, to a terminal H atom, and to a PPh(2) group. At room temperature, the BH(3) group is fluxional; the two bridging H atoms and the terminal H atom are equivalent on the NMR time scale. The motion is arrested at low temperature with DeltaG++ = ca. 37 and 42 kJ mol(-1), respectively, for 3 and 4. Both species are characterized completely by NMR and mass spectral measurements as well as by elemental analysis and single-crystal structure determinations.  相似文献   

14.
Reactions of (eta5-C5Me4R)(CO)2(MeCN)WMe (R = Me, Et) with HPh2SiCCtBu gave the novel alkynyl-bridged W-Si complexes, (eta5-C5Me4R)(CO)2W(mu-eta1:eta2-CCtBu)(SiPh2) (R = Me, Et), whose alkynyl ligands bridge the tungsten and silicon atoms in an eta1:eta2-coordination mode. The structures of these complexes were fully characterized, including X-ray crystallography. Treatment of (eta5-C5Me5)(CO)2W(mu-eta1:eta2-CCtBu)(SiPh2) with acetone resulted in acetone insertion into the silicon-alkynyl linkage followed by intramolecular C-H activation of the tBu group to give the chelate-type alkyl-alkene complex, (eta5-C5Me5)(CO)2W(eta1:eta2-CH2CMe2C=CHSiPh2OCMe2).  相似文献   

15.
The molecular structures of the titanium(III) borohydride complexes Ti(BH4)3(PEt3)2 and Ti(BH4)3(PMe2Ph)2 have been determined. If the BH4 groups are considered to occupy one coordination site, both complexes adopt distorted trigonal bipyramidal structures with the phosphines in the axial sites; the P-Ti-P angles deviate significantly from linearity and are near 156 degrees. In both compounds, two of the three BH4 groups are bidentate and one is tridentate. The deduced structures differ from the one previously described for the PMe3 analogue Ti(BH4)3(PMe3)2, in which two of the tetrahydroborate groups were thought to be bound to the metal in an unusual "side-on" (eta(2)-B,H) fashion. Because the PMe3, PEt3, and PMe2Ph complexes have nearly identical IR spectra, they most likely have similar structures. The current evidence strongly suggests that the earlier crystal structure of Ti(BH4)3(PMe3)2 was incorrectly interpreted and that these complexes all adopt structures in which two of the BH4 groups are bidentate and one is tridentate. The synthesis of the titanium(III) complex Ti(BH4)3(PMe2Ph)2 affords small amounts of a second product: the titanium(II) complex [Li(Et2O)2][Ti2(BH4)5(PMe2Ph)4]. The [Ti2(BH4)5(PMe2Ph)4]- anion consists of two Ti(eta(2)-BH4)2(PMe2Ph)2 centers linked by a bridging eta(2),eta(2)-BH4 group that forms a Ti...(mu-B)...Ti angle of 169.9(3) degrees. Unlike the distorted trigonal bipyramidal geometries seen for the titanium(III) complexes, the metal centers in this titanium(II) species each adopt nearly ideal tbp geometries with P-Ti-P angles of 172-176 degrees. All three BH4 groups around each Ti atom are bidentate. One of the BH4 groups on each Ti center bridges between Ti and an ether-coordinated Li cation, again in an eta(2),eta(2) fashion. The relationships between the electronic structures and the molecular structures of all these titanium complexes are briefly discussed.  相似文献   

16.
The thermodynamics of small-molecule (H(2), arene, alkane, and CO) addition to pincer-ligated iridium complexes of several different configurations (three-coordinate d(8), four-coordinate d(8), and five-coordinate d(6)) have been investigated by computational and experimental means. The substituent para to the iridium (Y) has been varied in complexes containing the (Y-PCP)Ir unit (Y-PCP = eta(3)-1,3,5-C(6)H(2)[CH(2)PR(2)](2)Y; R = methyl for computations; R = tert-butyl for experiments); substituent effects have been studied for the addition of H(2), C-H, and CO to the complexes (Y-PCP)Ir, (Y-PCP)Ir(CO), and (Y-PCP)Ir(H)(2). Para substituents on arenes undergoing C-H bond addition to (PCP)Ir or to (PCP)Ir(CO) have also been varied computationally and experimentally. In general, increasing electron donation by the substituent Y in the 16-electron complexes, (Y-PCP)Ir(CO) or (Y-PCP)Ir(H)(2), disfavors addition of H-H or C-H bonds, in contradiction to the idea of such additions being oxidative. Addition of CO to the same 16-electron complexes is also disfavored by increased electron donation from Y. By contrast, addition of H-H and C-H bonds or CO to the three-coordinate parent species (Y-PCP)Ir is favored by increased electron donation. In general, the effects of varying Y are markedly similar for H(2), C-H, and CO addition. The trends can be fully rationalized in terms of simple molecular orbital interactions but not in terms of concepts related to oxidation, such as charge-transfer or electronegativity differences.  相似文献   

17.
Reactions of laser-ablated lanthanum and yttrium atoms with carbon monoxide molecules in solid neon have been investigated using matrix-isolation infrared spectroscopy. The M(CO)x and MCO+ (M = La, Y; x = 1-4) molecules have been formed and identified on the basis of isotopic shifts, mixed isotopic splitting patterns, and CCl4-doping experiments. Density functional theory calculations have been performed on these lanthanum and yttrium carbonyls. The agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts substantiates the identification of these carbonyls from the matrix infrared spectrum. The present study reveals that the C-O stretching vibrational frequencies of MCO+ decrease from Sc to La, which indicates an increasing in metal d orbital --> CO pi* back-donation in this series.  相似文献   

18.
Treatment of (silox)3Ta (1, silox = tBu3SiO) with BH3.THF and BCl2Ph afforded (silox)3Ta(BH3) (2) and (silox)3Ta(eta2-B,Cl-BCl2Ph) (3), which are both remarkably stable Ta(III) compounds. NMe3 and ethylene failed to remove BH3 from 2, and no indication of BH3 exchange with BH3.THF-d8 was noted via variable-temperature 1H NMR studies. Addition of BH3.THF to (silox)3TaH2 provided the borohydride-hydride (silox)3HTa(eta3-BH4) (5), and its thermolysis released H2 to generate 2. Exposure of 2 to D2 enabled the preparation of isotopologues (silox)3Ta(BH3-nDn) (n = 0, 2; 1, 2-D; 2, 2-D2; 3, 2-D3) for isotopic perturbation of chemical shift studies, but these failed to distinguish between "inverse adduct" (i.e., (silox)3Ta-->BH3) or (silox)3Ta(eta2-B,H-BH3) forms of 2. Computational models (RO)3Ta(BH3) (R = H, 2'; SiH3, 2SiH SiMe3, 2SiMe, and SitBu3, 2SiBu) were investigated to assess the relative importance of steric and electronic effects on structure and bonding. With small R, eta2-B,H structures were favored, but for 2SiMe and 2SiBu, the dative structure proved to be similar in energy. The electonic and vibrational features of both structure types were probed. The IR spectrum of 2 was best matched by the eta2-B,H conformer of 2SiBu. In related computations pertaining to 3, small R models favored the oxidative addition of a BCl bond, while with R = SitBu3 (3SiBu), an excellent match with its X-ray crystal structure revealed the critical steric influence of the silox ligands.  相似文献   

19.
The electronic structure of two cyclooctatetraene-bridged dinuclear first-row transition metal complexes of the type [(CpM)[(CO)3M']]mu-Cot (M = Cr; M' = Fe (1), Cr (2)) was investigated by complete active space self-consistent field (CASSCF) calculations. In this context the differences in the binding capabilities of the complex fragments CpM and (CO)3M are discussed on the basis of extended Huckel molecular orbital (MO) calculations. The geometries used for the CASSCF calculations for complex 1 were obtained from the crystal structure. For 2 a model structure was established by geometry optimization using density functional methods. The CASSCF results agree well with the experimental findings and provide insight into the binding situation of the two compounds. Complex 1 can be regarded as being composed of a chromocene-like subunit CpCr(eta5-C5H5) and the fragment (CO)3Fe(eta3-C3H3). A direct metal-metal bond is found, involving one initially singly occupied orbital of each fragment, leading to a doublet ground state for 1 with the remaining unpaired electron localized at the chromium center. For 2 no such direct metal-metal bond can be recognized. A very weak direct metal-metal interaction is induced by electron donation from the Cot2- ligand into a formally unoccupied metal-metal binding orbital combination. In the quartet ground state all three unpaired electrons are localized at the chromium center of the formally doubly positive charged CpCr unit, on which complex fragment [(CO)3Cr(eta5-Cot)]2- acts like a cyclopentadienyl ligand. The coordination sphere of the chromium center of the CpCr unit resembles that of a metallocene metal center and its metal 3d occupation scheme corresponds to that of vanadocene.  相似文献   

20.
The reactions of [Cp*Fe(mu-SR1)3FeCp*] (Cp* = eta5-C5Me5; R1 = Et, Me) with 1.5 equiv R2NHNH2 (R2 = Ph, Me) give the mu-eta2-diazene diiron thiolate-bridged complexes [Cp*Fe(mu-SR1)2(mu-eta2-R2N NH)FeCp*], along with the formation of PhNH2 and NH3. These mu-eta2-diazene diiron thiolate-bridged complexes exhibit excellent catalytic N-N bond cleavage of hydrazines under ambient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号