首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MALDI-MS imaging of features smaller than the size of the laser beam   总被引:1,自引:0,他引:1  
The feasibility of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging of features smaller than the laser beam size has been demonstrated. The method involves the complete ablation of the MALDI matrix coating the sample at each sample position and moving the sample target a distance less than the diameter of the laser beam before repeating the process. In the limit of complete sample ablation, acquiring signal from adjacent positions spaced by distances smaller than the sample probe enhances image resolution as the measured analyte signal only arises from the overlap of the laser beam size and the non-ablated sample surface. Image acquisition of features smaller than the laser beam size has been demonstrated with peptide standards deposited on electron microscopy calibration grids and with neuropeptides originating from single cells. The presented MS imaging technique enables approximately 25 microm imaging spatial resolution using commercial MALDI mass spectrometers having irregular laser beam sizes of several hundred micron diameters. With appropriate sampling, the size of the laser beam is not a strict barrier to the attainable MALDI-MS imaging resolution.  相似文献   

2.
Polystyrene (PS), a standard material for cell culture consumable labware, was molded into microstructures with high fidelity of replication by an elastomeric polydimethylsiloxane (PDMS) mold. The process was a simple, benchtop method based on soft lithography using readily available materials. The key to successful replica molding by this simple procedure relies on the use of a solvent, for example, gamma-butyrolactone, which dissolves PS without swelling the PDMS mold. PS solution was added to the PDMS mold, and evaporation of the solvent was accomplished by baking the mold on a hotplate. Microstructures with feature sizes as small as 3 μm and aspect ratios as large as 7 were readily molded. Prototypes of microfluidic chips made from PS were prepared by thermal bonding of a microchannel molded in PS with a flat PS substrate. The PS microfluidic chip displayed much lower adsorption and absorption of hydrophobic molecules (e.g. rhodamine B) compared to a comparable chip created from PDMS. The molded PS surface exhibited stable surface properties after plasma oxidation as assessed by contact angle measurement. The molded, oxidized PS surface remained an excellent surface for cell culture based on cell adhesion and proliferation. To demonstrate the application of this process for cell biology research, PS was micromolded into two different microarray formats, microwells and microposts, for segregation and tracking of non-adherent and adherent cells, respectively. The micromolded PS possessed properties that were ideal for biological and bioanalytical needs, thus making it an alternative material to PDMS and suitable for building lab-on-a-chip devices by soft lithography methods.  相似文献   

3.
Although a number of computational studies have examined the relative stability of icosahedral and decahedral gold clusters from 1 to 3 nm in size, few studies have focussed on the variety of face-centered cubic (fcc) nanoparticles in this size regime. In most cases small fcc gold particles are assumed to adopt the truncated octahedral shape, but in light of the fact that the shape and structure of gold nanoparticles is known to vary, the relative stability of fcc polyhedra may change with size. Presented here are results of first-principles calculations investigating the preferred shape of gold particles less than 3 nm in size. Our results indicate that the equilibrium shape of fcc gold nanoparticles less than 1 nm is the cuboctahedron, but this shape rapidly becomes energetically unstable with respect to the truncated octahedron, octahedron and truncated cube shapes as the size increases.  相似文献   

4.
The growing demand for new solutions to pursue the trend of micro- and nanoelectronics predicted by Moore's law is stimulating the development of new high-resolution, low-cost lithographies. Here we demonstrate that several bottom-up approaches can be used to increase the throughput of soft lithography by exploiting the enhanced hydrophilicity, the low viscosity, and the fragility of the employed materials. In particular, the customized functionalization of the involved surfaces to improve the wettability to polymer fluids and the dramatic decrease of the viscosity of polymer compounds as the temperature is increased, together with the good thermal stability of the functionalized surfaces, allow a faster filling of elastomeric channels, up to almost an order of magnitude with respect to conventional microfluidics.  相似文献   

5.
Summary In recent years spatially resolved ESCA techniques have become increasingly popular for the analysis of samples with structured surfaces. The chemical information available in ESCA is highly important in surface analysis and there is a great need to realise this information in an imaging mode. The method of parallel imaging ESCA was first implemented on the VG Scientific ESCASCOPE and has more recently been developed for the ESCALAB 220i range of instruments. The Fourier transform electron optics used on these instruments provides the flexibility of real time or accumulated imaging along with the highest spatial resolution ever achieved. Some examples are shown exhibiting image resolution better than 2 microns and spectroscopy from an area of 15 microns (classically defined as a spatial resolution of about 7.5 microns). The use of a focussed monochromator in conjunction with the imaging facility allows fast chemical state imaging. An example of this is shown.  相似文献   

6.
Sub-100 nm wide supported phospholipid bilayers (SLBs) were patterned on a planar borosilicate substrate by AFM-based nanoshaving lithography. First, a bovine serum albumin monolayer was coated on the glass and then selectively removed in long strips by an AFM tip. The width of vacant strips could be controlled down to 15 nm. Bilayer lines could be formed within the vacant strips by vesicle fusion. It was found that stable bilayers formed by this method had a lower size limit of approximately 55 nm in width. This size limit stems from a balance between a favorable bilayer adhesion energy and an unfavorable bilayer edge energy.  相似文献   

7.
Soft lithographic techniques are widely used for fundamental biological applications. This study investigates the extension of soft lithography for use on human tissue to create a biological implant by systematically studying the effect of pattern size on cellular morphology. We focus on mimicking a key layer of the physiological retina with an organized monolayer of epithelial cells to act as a new treatment for age-related macular degeneration. We show that epithelial cells can be confined to cytophilic islands defined on lens capsule by the inhibitory polymer poly(vinyl alcohol). In addition, as the size of the cytophilic islands grows, both the fraction of islands with cells attached and the number of cells adhered to each island increase. High densities of cell adhesion and single cell attachment per island were achieved with a 25 microm pattern size. Over time, the cells spread over the 5 microm wide barriers to form a confluent monolayer that may eventually serve as a functional retinal implant. With the ability to apply soft lithography to tissue samples, human tissue may become a universal membrane substrate for other ocular diseases or in tissue engineering applications elsewhere in the body.  相似文献   

8.
Ordered 2D non-close-packed sphere arrays with controllable lattice structures have been fabricated by using soft lithography based on the solvent-swelling and mechanical deformation behaviors of PDMS film. The figure shows an SEM image of the ordered quasi-one-dimensional parallel wires of silica spheres on a polymer-coated substrate.  相似文献   

9.
The fabrication of microfluidic channels with complex three-dimensional (3D) geometries presents a major challenge to the field of microfluidics, because conventional lithography methods are mainly limited to rectangular cross-sections. In this paper, we demonstrate the use of mechanical micromachining to fabricate microfluidic channels with complex cross-sectional geometries. Micro-scale milling tools are first used to fabricate semi-circular patterns on planar metallic surfaces to create a master mold. The micromilled pattern is then transferred to polydimethylsiloxane (PDMS) through a two-step reverse molding process. Using these semi-circular PDMS channels, circular cross-sectioned microchannels are created by aligning and adhering two channels face-to-face. Straight and serpentine-shaped microchannels were fabricated, and the channel geometry and precision of the metallic master and PDMS molds were assessed through scanning electron microscopy and non-contact profilometry. Channel functionality was tested by perfusion of liquid through the channels. This work demonstrates that micromachining enabled soft lithography is capable of fabricating non-rectangular cross-section channels for microfluidic applications. We believe that this approach will be important for many fields from biomimetics and vascular engineering to microfabrication and microreactor technologies.  相似文献   

10.
Resist detachment from the substrate during mold-substrate separation is one of the key challenges for nanoimprint lithography as the pitch of features decreases. We analyzed the problem by considering the surface and interfacial free energies of the initial state and the possible final states of the mold-polymer-substrate system and designed the chemistry of the system to provide the desired final state. We dramatically improved the resist adhesion to the substrate by assembling a monolayer of surface linker molecules on the substrate surface. A 37 nanowire pattern at 30 nm half-pitch was imprinted onto the surface-modified substrate.  相似文献   

11.
We show that it is possible to use single layer soft lithography to create deformable polymer membranes within microfluidic chips for performing a variety of microfluidic operations. Single layer microfluidic chips were designed, fabricated, and characterized to demonstrate pumping, sorting, and mixing. Flow rates as high as 0.39 microl min(-1) were obtained by peristaltic pumping using pneumatically-actuated membrane devices. Sorting was attained via pneumatic actuation of membrane units placed alongside the branch channels. An active mixer was also demonstrated using single-layer deformable membrane units.  相似文献   

12.
We report on the formation of ordered arrays of micrometric holes on the surface of polystyrene (PS) films cast from volatile solvents in the presence of humidity at different temperatures. The formation mechanism is investigated for PS having different molecular weights, polydispersities, and carboxylic terminations. Among the chosen materials, a highly regular honeycomb microstructured morphology is obtained on the surface of films prepared with dicarboxy-terminated PS with = 100,000. Experiments and observations on film formation indicate that polar groups are playing a fundamental role in this process. Tuning the surface tension by means of polar terminations allows the film morphology to be modified and in particular the preparation of two- or three-dimensional microstructured films. Finally, we show how these structures can be replicated by soft lithography and then used in the fields of photonic crystals and organic electronics.  相似文献   

13.
Highly ordered arrays of single living bacteria were obtained by selective adsorption of bacteria onto chemical patterns with micrometric resolution. The chemically engineered template surfaces were prepared with the combination of microcontact printing process and a simple incubation technique. This methodology can be used for fundamental studies of bacterium's inner mechanisms and sub-cellular organization as well as for interfacing living bacteria with artificial microsystems.  相似文献   

14.
Devaraju NS  Unger MA 《Lab on a chip》2011,11(11):1962-1967
The compatibility of microfluidic devices with solvents and other chemicals is extremely important for many applications such as organic synthesis in microreactors and drug screening. We report the successful fabrication of microfluidic devices from a novel perfluoropolyether based polymer utilizing the Multilayer Soft Lithography? (MSL) technique with simple, straightforward processing. The perfluorinated polymer SIFEL X-71 8115 is a highly chemically resistant elastomeric material. We demonstrate fabrication of a microfluidic device using an off-ratio bonding technique to bond multiple SIFEL layers, each patterned lithographically. The mechanical properties of the SIFEL MSL valves (including actuation pressures) are similar to PDMS MSL valves of the same geometry. Chemical compatibility tests highlight SIFEL's remarkable resistance to organic solvents, acids and alkalis.  相似文献   

15.
Langmuir-Blodgett (LB) films of monodisperse iron oxide nanoparticles have been successfully deposited onto patterned poly(dimethylsiloxane) surfaces. These patterned LB films of iron oxide nanoparticles were transferred onto solid substrates using micro contact printing.  相似文献   

16.
Materials bearing microscale patterns on the surface have important biomedical applications such as scaffolds in tissue engineering, drug delivery systems, sensors, and actuators. Hydrogels are an attractive class of materials that has excellent biocompatibility, biodegradability, and tunable mechanical properties that meet the requirements of the aforementioned applications. Generating patterns of intricate microstructures onto the hydrogel surfaces, however, is challenging due to properties such as the crosslinking density, low mechanical strength, adhesion, or chemical incompatibility of hydrogels with various molds. Here, we report the use of a soft lithography technique to successfully transfer arrays of micropillars onto a poly(2‐hydroxyethyl methacrylate)‐based hydrogel. The swelling of the hydrogel in solvents, such as phosphate‐buffered saline, deionized water, 60% ethanol, and absolute ethanol, facilitates the reproducible replication of the pattern. Furthermore, the micropillar pattern promotes the attachment of HeLa cells onto this hydrogel which is not inherently adhesive when unpatterned. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1144–1157  相似文献   

17.
One of the major issues during soft lithographic processes is that, if the pressing force on the stamp becomes too high, the stamp may erroneously come into contact with the substrate in zones where contact is not intended. This decreases the patterning accuracy and may lead to badly or nonperforming electronic devices and is therefore undesired. Design rules, available at an early stage in the design phase, are desired to speed-up the development of this technique. Ultimately, these rules should give an indication of the critical pressure that can safely be applied on the stamp thereby avoiding unwanted contact between the stamp and the substrate. To obtain these critical pressures, numerical analyses of the deformation behavior of two characteristic configurations in the microstructured surface pattern of the rubber stamp are performed. The deformation behavior of the rubber is modeled according to a Gaussian and a non-Gaussian approach, leading to a neo-Hookean and Arruda-Boyce constitutive model, respectively. Besides these material nonlinearities, geometrical nonlinearities are taken into account as well. The calculated pressure at which undesired contact takes place (the roof collapse pressure) is compared to experimentally obtained values for two particular types of structures, and the results are in agreement within the error margins of the experiments and those ensuing from the assumptions of the numerical simulations.  相似文献   

18.
When poly(isopropylidene diallylmalonate) rich in threo-disyndiotactic sequences (st(rich)-2) was utilized as a cross-linkable ink for microcontact printing, the resultant submicrometer-scale patterns featuring 700 and 300 nm wide stripes were successfully insolubilized while maintaining their high dimensional integrity by heat-induced cross-linking with elimination of CO(2) and acetone. In sharp contrast, although the thermal properties and reactivities of a polymer rich in threo-diisotactic sequences (it(rich)-2) and a polymer having low stereoregularity (2(low)) are little different from those of st(rich)-2, the patterns printed with these reference polymers collapsed considerably upon heating as a result of a volume shrinkage effect. The striking difference between st(rich)-2 and the other two polymers most likely arises from the nanofiber-forming character of st(rich)-2, where the printed stripes are porous and much less affected by the volume shrinkage of individual nanofibers.  相似文献   

19.
We report on a comparative measurement of SiO2/Si dielectric film thickness (t < 10 nm) using grazing‐incidence x‐ray photoelectron spectroscopy, neutron reflectometry and spectroscopic ellipsometry. Samples with nominal thicknesses of 3–7 nm were characterized by XPS with grazing‐incidence x‐rays at 1.8 keV, by cold neutron reflectometry (λ = 0.475 nm) and by spectroscopic ellipsometry over 1.5 eV < E < 6.0 eV. The results show good agreement between the ellipsometry and grazing‐incidence XPS, with slightly lower values for the neutron reflectometry. The role of surface contamination in each type of measurement is discussed. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

20.
We have demonstrated three simple strategies employing poly(dimethylsiloxane) (PDMS) molds for patterning carbon surfaces with two different modifiers in an 18 microm line pattern. The PDMS molds are patterned with microfluidic channels (approximately 22 microm wide and 49 microm deep) and form a reversible, conformal seal to the pyrolyzed photoresist film (PPF) and modified PPF surfaces. Modifiers are electrochemically grafted to the PPF surface by the reduction of aryl diazonium salts and the oxidation of primary amines. For the fill-in patterning approach, the first modifier is electrografted to the PPF surface exposed within the microchannels, and in a second grafting step after removal of the PDMS mold, the second modifier fills in the remaining surface. The selective conversion strategy involves electrografting a continuous film of the modifier to the PPF surface, sealing the PDMS mold to the modified surface and carrying out an irreversible electrochemical reaction of the modifier exposed within the microchannels. In the build-up patterning approach, the PDMS mold is sealed to the modified PPF surface, and a chemical coupling reaction is effected in the microchannels to build up the pattern. The patterns are characterized using SEM, optical microscopy, the formation of condensation figures, and SEM imaging after the assembly of Au nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号