首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the oscillation of the second-order neutral difference equation $$\Delta ^2 \left( {x_n - px_{n - \tau } } \right) + q_n f\left( {x_{n - \sigma _n } } \right) = 0$$ as well as the oscillatory behavior of the corresponding ordinary difference equation $$\Delta ^2 z_n + q_n f\left( {R\left( {n,\lambda } \right)z_n } \right) = 0$$ .  相似文献   

2.
РАБОтА пОсВьЩЕНА ИжУ ЧЕНИУ сВьжИ кОЁФФИцИ ЕНтОВ ФУРьЕ ФУНкцИИ ?(x) И g(x) тАкИх ЧтО (1) $$\parallel \Delta _h^m g(x)\parallel _{L^2 } \leqq \parallel \Delta _h^m f(x)\parallel _{L^2 } $$ Дль ВськОгОh≧0 И НЕкОт ОРОгОт. пОкАжАНО, ЧтО сУЩЕстВ УУт НЕпРЕРыВНыЕ ФУНк цИь ?(x) Иg(x), УДОВлЕтВОРьУЩИЕ сОО т-НОшЕНИУ (1), И тАкИЕ, ЧтО $$\mathop \sum \limits_{n = 0}^\infty [a_n^2 (f) + b_n^2 (f)]^{\alpha /2}< \infty $$ Дль ВськОгО α>0 И $$\mathop \sum \limits_{n = 0}^\infty [a_n^2 (g) + b_n^2 (g)]^{\beta /2} = \infty $$ Дль ВськОгОΒ<2. АНАлОгИЧНыИ РЕжУльт Ат ДОкАжыВАЕтсь И Дль пЕРИОДИЧЕскИх МУльт ИплИкАтИВНых ОР-тОНО РМИРОВАННых сИстЕМ.  相似文献   

3.
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose P, n, k, τ are integers, P≥1, n≥2, k≥n (τ+1), τ≥0. Put $$J_{k,n} (P) = \int_0^1 \cdots \int_0^1 {\left| {\sum\nolimits_{x = 1}^P {e^{2\pi i(a_1 x + \cdots + a_n x^n )} } } \right|^{2k} da_1 \ldots da_n .} $$ Then $$J_{k,n} \leqslant n!k^{2n\tau } n^{\sigma n^2 u} \cdot 2^{2n^2 \tau } P^{2k - \Delta } ,$$ where $$\begin{gathered} u = u_\tau = min(n + 1,\tau ), \hfill \\ \Delta = \Delta _\tau = n(n + 1)/2 - (1 - 1/n)^{\tau + 1} n^2 /2. \hfill \\ \end{gathered} $$   相似文献   

4.
For a linear differential equation of the type (1) $$\frac{{dx}}{{dt}} = A_0 x(t) + A_1 x(t - \Delta _1 ) + ... + A_n x(t - \Delta _n )$$ we establish the followingTHEOREM. If $$\overline {\left| {z_1 } \right| = ...\underline{\underline \cup } \left| z \right|_n = 1\sigma \left( {A_0 + \sum\nolimits_{k = 1}^n {z_k A_k } } \right)} \subset \left\{ {\lambda :\operatorname{Re} \lambda< 0} \right\}$$ then system (1) is absolutely asymptotically stable.  相似文献   

5.
6.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

7.
The Volterra integrodifferential equation $$\begin{array}{*{20}c} {u_t (t,x) + \smallint '_0 a(t - s)( - \Delta u(s,x) + f(x,u(s,x)))ds = h(t,x),,} \\ {t > 0,x \in \Omega \subset R^N ,} \\ \end{array} $$ together with boundary and initial conditions is considered. The existence of global solutions (in time) is established under weak assumptions onf. An application in heat flow is also indicated.  相似文献   

8.
This article mainly consists of two parts. In the first part the initial value problem (IVP) of the semilinear heat equation $$\begin{gathered} \partial _t u - \Delta u = \left| u \right|^{k - 1} u, on \mathbb{R}^n x(0,\infty ), k \geqslant 2 \hfill \\ u(x,0) = u_0 (x), x \in \mathbb{R}^n \hfill \\ \end{gathered} $$ with initial data in $\dot L_{r,p} $ is studied. We prove the well-posedness when $$1< p< \infty , \frac{2}{{k(k - 1)}}< \frac{n}{p} \leqslant \frac{2}{{k - 1}}, and r =< \frac{n}{p} - \frac{2}{{k - 1}}( \leqslant 0)$$ and construct non-unique solutions for $$1< p< \frac{{n(k - 1)}}{2}< k + 1, and r< \frac{n}{p} - \frac{2}{{k - 1}}.$$ In the second part the well-posedness of the avove IVP for k=2 with μ0?H s (? n ) is proved if $$ - 1< s, for n = 1, \frac{n}{2} - 2< s, for n \geqslant 2.$$ and this result is then extended for more general nonlinear terms and initial data. By taking special values of r, p, s, and u0, these well-posedness results reduce to some of those previously obtained by other authors [4, 14].  相似文献   

9.
On simultaneous approximation by lagrange interpolating polynomials   总被引:1,自引:0,他引:1  
This paper considers to replace △_m(x)=(1-x~2)~2(1/2)/n +1/n~2 in the following result for simultaneousLagrange interpolating approximation with (1-x~2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then|f~(k)(x)-P_~(k)(f,x)|=O(1)△_(n)~(a-k)(x)ω(f~(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q,where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_nU Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.  相似文献   

10.
Estimates are obtained for the nonsymmetric deviations Rn [sign x] and Rn [sign x]L of the function sign x from rational functions of degree ≤n, respectively, in the metric $$c([ - 1, - \delta ] \cup [\delta ,1]), 0< \delta< exp( - \alpha \surd \overline n ), \alpha > 0,$$ and in the metric L[?1, 1]: $$\begin{gathered} R_n [sign x] _{\frown }^\smile exp \{ - \pi ^2 n/(2 ln 1/\delta )\} , n \to \infty , \hfill \\ 10^{ - 3} n^{ - 2} \exp ( - 2\pi \surd \overline n )< R_n [sign x_{|L}< \exp ( - \pi \surd \overline {n/2} + 150). \hfill \\ \end{gathered} $$ Let 0 < δ < 1, Δ (δ)=[?1, ? δ] ∪ [δ, 1]; $$\begin{gathered} R_n [f;\Delta (\delta )] = R_n [f] = inf max |f(x) - R(x)|, \hfill \\ R_n [f;[ - 1,1] ]_L = R_n [f]_L = \mathop {inf}\limits_{R(x)} \smallint _{ - 1}^1 |f(x) - R(x)|dx, \hfill \\ \end{gathered} $$ where R(x) is a rational function of order at most n. Bulanov [1] proved that for δ ε [e?n, e?1] the inequality $$\exp \left( {\frac{{\pi ^2 n}}{{2\ln (1/\delta }}} \right) \leqslant R_n [sign x] \leqslant 30 exp\left( {\frac{{\pi ^2 n}}{{2\ln (1/\delta + 4 ln ln (e/\delta ) + 4}}} \right)$$ is valid. The lower estimate in this inequality was previously obtained by Gonchar ([2], cf. also [1]).  相似文献   

11.
In this paper, we consider the asymptotic behavior of solutions of the forced nonlinear neutral difference equation $$\Delta \left[ {x(n) - \sum\limits_{i - 1}^m {p_i (n)x(n - k_i )} } \right] + \sum\limits_{j = 1}^s {q_j (n)f(x(n - l_j )) = r(n)} $$ with sign changing coefficients. Some sufficient conditions for every solution of (*) to tend to zero are established. The results extend and improve some known theorems in literature.  相似文献   

12.
The following theorem is provedTheorem 1.Let q be a polynomial of degree n(qP_n)with n distinct zeroes lying inthe interval[-1,1] and△'_q={-1}∪{τ_i:q'(τ_i)=0,i=1,n-1}∪{1}.If polynomial pP_n satisfies the inequalitythen for each k=1,n and any x[-1,1]its k-th derivative satisfies the inequality丨p~(k)(x)丨≤max{丨q~((k))(x)丨,丨1/k(x~2-1)q~(k+1)(x)+xq~((k))(x)丨}.This estimate leads to the Markov inequality for the higher order derivatives ofpolynomials if we set q=T_n,where Tn is Chebyshev polynomial least deviated from zero.Some other results are established which gives evidence to the conjecture that under theconditions of Theorem 1 the inequality ‖p~((k))‖≤‖q~(k)‖holds.  相似文献   

13.
For 2ir-periodic polynomial splines of order r, of minimal defect, with nodes at the points ktr/n, ne, there are established the sharp inequalities $$\parallel s^{(1)} \parallel _{ 2} \leqslant \frac{{\parallel \varphi _{n,r}^{(1)} \parallel _{ 2} }}{{\parallel \Delta _h^l \varphi _{n, r} \parallel _{ 2} }}\parallel \Delta _h^l s\parallel _{ 2} \leqslant \frac{{\parallel \varphi _{n,r}^{(1)} \parallel _{ 2} }}{{\parallel \varphi _{n, r} \parallel _{ 2} }}\parallel s \parallel _{ 2} , l = 1, ..., r - 1,$$ valid for 0 $$\Delta _h^l / (x) = \sum\limits_{k = 0}^l {( - 1)^k C_l^k /} (x + (l - 2k) h)$$ .  相似文献   

14.
Let \(T(x) = \sum\limits_{ord(G) \leqq x} {t(G),} \) , wheret(G) define the number of direct factors of a finite Abelian group.E. Krätzel ([5]) defined a remainderΔ 1(x) in the asymptotic ofT(x) and proved $$\Delta _1 (x)<< x^{{5 \mathord{\left/ {\vphantom {5 {12}}} \right. \kern-\nulldelimiterspace} {12}}} \log ^4 x.$$ Using two different methods to estimate a special three-dimensional exponential sum we get the better results $$\Delta _1 (x)<< x^{{{282} \mathord{\left/ {\vphantom {{282} {683}}} \right. \kern-\nulldelimiterspace} {683}}} \log ^4 x$$ and $$\Delta _1 (x)<< x^{{{45} \mathord{\left/ {\vphantom {{45} {109}}} \right. \kern-\nulldelimiterspace} {109}} + \varepsilon } (\varepsilon > 0).$$   相似文献   

15.
This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima-tion:then|f~(k)(x)-P_n~(k)(f,x)|=O(1)△_n~(q-k)(x)ωwhere P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodesX_nUY_n(see the definition of the next).  相似文献   

16.
This paper deals with the boundedness of the solutions of the following dynamic equations(r(t)x△(t))△+a(t)f(xσ(t))+b(t)g(xσ(t))=0and(r(t)x△(t))△+a(t)xσ(t)+b(t)f(x(t-τ(t)))=e(t)on a time scale T.By using the Bellman integral inequality,we establish some suffcient conditions for boundedness of solutions of the above equations.Our results not only unify the boundedness results for differential and difference equations but are also new for the q-difference equations.  相似文献   

17.
ПустьM m - множество 2π-п ериодических функци йf с конечной нормой $$||f||_{p,m,\alpha } = \sum\limits_{k = 1}^m {||f^{(k)} ||_{_p } + \mathop {\sup }\limits_{h \ne 0} |h|^{ - \alpha } ||} f^{(m)} (o + h) - f^{(m)} (o)||_{p,} $$ где1 ≦ p ≦ ∞, 0≦α≦1. Рассмотр им средние Bалле Пуссе на $$(\sigma _{n,1} f)(x) = \frac{1}{\pi }\int\limits_0^{2x} {f(u)K_{n,1} (x - u)du} $$ и $$(L_{n,1} f)(x) = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^{2n} {f(x_k )K_{n,1} } (x - x_k ),$$ де0≦l≦n и x k=2kπ/(2n+1). В работе по лучены оценки для вел ичин \(||f - \sigma _{n,1} f||_{p,r,\beta } \) и $$||f - L_{n,1} f||_{p,r,\beta } (r + \beta \leqq m + \alpha ).$$   相似文献   

18.
Leta(n) denote the number of non-isomorphic Abelian groups withn elements, and Δ(x) (resp. Δ x ) appropriate error terms in the asymptotic formulas for the counting function \(\sum\nolimits_{n \leqslant x} {a(n)} (resp. \sum\nolimits_{m n \leqslant x} {a(m)} a(n))\) . Sharp bounds for $$\int\limits_1^X {\Delta (x) dx} , \int\limits_1^X {\Delta _{ 1} (x) dx} ,\int\limits_1^X {\Delta _1^2 (x) dx} $$ are given by using results on power moments of the Riemann zeta-function.  相似文献   

19.
20.
In this paper the authors present sufficient conditions for all bounded solutions of the second order neutral difference equation $$\Delta ^2 (y_n - py_{n - k} ) - q_n f(y_{n - \ell } ) = 0, n \in \mathbb{N}$$ to be oscillatory. Examples are provided to illustrate the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号