首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A stochastic optimal LQR control problem under some integral quadratic (IQ) constraints is studied, with cross terms in both the cost and the constraint functionals, allowing all the control weighting matrices being indefinite. Sufficient conditions for the well-posedness of this problem are given. When these conditions are satisfied, the optimal control is explicitly derived via dual theory.  相似文献   

2.
Recently, there has been an increasing interest in the study on uncertain optimal control problems. In this paper, a linear quadratic (LQ) optimal control with cross term for discrete‐time uncertain systems is considered, whereas the weighting matrices in the cost function are allowed to be indefinite. Firstly, a recurrence equation for the problem is presented based on Bellman's principle of optimality in dynamic programming. Then, a necessary condition for the existence of an optimal linear state feedback control of the indefinite LQ problem is given by the recurrence equation. Moreover, a sufficient condition of well‐posedness for the indefinite LQ problem is presented by introducing a linear matrix inequality (LMI) condition. Furthermore, it is shown that the well‐posedness of the indefinite LQ problem, the solvability of the indefinite LQ problem, the LMI condition, and the solvability of the constrained difference equation are equivalent to each other. Finally, an example is presented to illustrate the results obtained.  相似文献   

3.
The following question arises in stochastic programming: how can one approximate a noisy convex function with a convex quadratic function that is optimal in some sense. Using several approaches for constructing convex approximations we present some optimization models yielding convex quadratic regressions that are optimal approximations in L 1, L ?? and L 2 norm. Extensive numerical experiments to investigate the behavior of the proposed methods are also performed.  相似文献   

4.
We propose a classification approach exploiting relationships between ellipsoidal separation and Support-vector Machine (SVM) with quadratic kernel. By adding a (Semidefinite Programming) SDP constraint to SVM model we ensure that the chosen hyperplane in feature space represents a non-degenerate ellipsoid in input space. This allows us to exploit SDP techniques within Support-vector Regression (SVR) approaches, yielding better results in case ellipsoid-shaped separators are appropriate for classification tasks. We compare our approach with spherical separation and SVM on some classification problems.  相似文献   

5.
Stochastic semidefinite programming (SSDP) is a new class of optimization problems with a wide variety of applications. In this article, asymptotic analysis results of sample average approximation estimator for SSDP are established. Asymptotic analysis result already existing for stochastic nonlinear programming is extended to SSDP, that is, the conditions ensuring the convergence in distribution of sample average approximation estimator for SSDP to a multivariate normal are obtained and the corresponding covariance matrix is described in a closed form.  相似文献   

6.
Identifying clusters of similar objects in data plays a significant role in a wide range of applications. As a model problem for clustering, we consider the densest \(k\) -disjoint-clique problem, whose goal is to identify the collection of \(k\) disjoint cliques of a given weighted complete graph maximizing the sum of the densities of the complete subgraphs induced by these cliques. In this paper, we establish conditions ensuring exact recovery of the densest \(k\) cliques of a given graph from the optimal solution of a particular semidefinite program. In particular, the semidefinite relaxation is exact for input graphs corresponding to data consisting of \(k\) large, distinct clusters and a smaller number of outliers. This approach also yields a semidefinite relaxation with similar recovery guarantees for the biclustering problem. Given a set of objects and a set of features exhibited by these objects, biclustering seeks to simultaneously group the objects and features according to their expression levels. This problem may be posed as that of partitioning the nodes of a weighted bipartite complete graph such that the sum of the densities of the resulting bipartite complete subgraphs is maximized. As in our analysis of the densest \(k\) -disjoint-clique problem, we show that the correct partition of the objects and features can be recovered from the optimal solution of a semidefinite program in the case that the given data consists of several disjoint sets of objects exhibiting similar features. Empirical evidence from numerical experiments supporting these theoretical guarantees is also provided.  相似文献   

7.
Semidefinite programs are a class of optimization problems that have been studied extensively during the past 15 years. Semidefinite programs are naturally related to linear programs, and both are defined using deterministic data. Stochastic programs were introduced in the 1950s as a paradigm for dealing with uncertainty in data defining linear programs. In this paper, we introduce stochastic semidefinite programs as a paradigm for dealing with uncertainty in data defining semidefinite programs.The work of this author was supported in part by the U.S. Army Research Office under Grant DAAD 19-00-1-0465. The material in this paper is part of the doctoral dissertation of this author in preparation at Washington State University.  相似文献   

8.
In this paper, we consider an alternating direction algorithm for the solution of semidefinite programming problems (SDP). The main idea of our algorithm is that we reformulate the complementary conditions in the primal–dual optimality conditions as a projection equation. By using this reformulation, we only need to make one projection and solve a linear system of equation with reduced dimension in each iterate. We prove that the generated sequence converges to the solution of the SDP under weak conditions.  相似文献   

9.
The formulation of interior point algorithms for semidefinite programming has become an active research area, following the success of the methods for large-scale linear programming. Many interior point methods for linear programming have now been extended to the more general semidefinite case, but the initialization problem remained unsolved.In this paper we show that the initialization strategy of embedding the problem in a self-dual skew-symmetric problem can also be extended to the semidefinite case. This method also provides a solution for the initialization of quadratic programs and it is applicable to more general convex problems with conic formulation.  相似文献   

10.
This paper deals with a theoretical stochastic dynamic optimization model for the external financing of firms. We aim at searching for the best intensity of payment that a financier has to apply to a company in order to have a loan repaid. The techniques involved are related to the optimal control theory with exit time. We follow a dynamic programming approach. Our model also presents a distinction between the legal and the illegal financier, and a theoretical comparison analysis of the results is presented. Some numerical examples provide further validation of the theoretical results.  相似文献   

11.
In this paper, we introduce a transformation that converts a class of linear and nonlinear semidefinite programming (SDP) problems into nonlinear optimization problems. For those problems of interest, the transformation replaces matrix-valued constraints by vector-valued ones, hence reducing the number of constraints by an order of magnitude. The class of transformable problems includes instances of SDP relaxations of combinatorial optimization problems with binary variables as well as other important SDP problems. We also derive gradient formulas for the objective function of the resulting nonlinear optimization problem and show that both function and gradient evaluations have affordable complexities that effectively exploit the sparsity of the problem data. This transformation, together with the efficient gradient formulas, enables the solution of very large-scale SDP problems by gradient-based nonlinear optimization techniques. In particular, we propose a first-order log-barrier method designed for solving a class of large-scale linear SDP problems. This algorithm operates entirely within the space of the transformed problem while still maintaining close ties with both the primal and the dual of the original SDP problem. Global convergence of the algorithm is established under mild and reasonable assumptions. Received: January 5, 2000 / Accepted: October 2001?Published online February 14, 2002  相似文献   

12.
The robust truss topology optimization against the uncertain static external load can be formulated as mixed-integer semidefinite programming. Although a global optimal solution can be computed with a branch-and-bound method, it is very time-consuming. This paper presents an alternative formulation, semidefinite programming with complementarity constraints, and proposes an efficient heuristic. The proposed method is based upon the concave–convex procedure for difference-of-convex programming. It is shown that the method can often find a practically reasonable truss design within the computational cost of solving some dozen of convex optimization subproblems.  相似文献   

13.
In this paper, we first demonstrate that positive semidefiniteness of a large well-structured sparse symmetric matrix can be represented via positive semidefiniteness of a bunch of smaller matrices linked, in a linear fashion, to the matrix. We derive also the “dual counterpart” of the outlined representation, which expresses the possibility of positive semidefinite completion of a well-structured partially defined symmetric matrix in terms of positive semidefiniteness of a specific bunch of fully defined submatrices of the matrix. Using the representations, we then reformulate well-structured large-scale semidefinite problems into smooth convex–concave saddle point problems, which can be solved by a Prox-method developed in [6] with efficiency . Implementations and some numerical results for large-scale Lovász capacity and MAXCUT problems are finally presented.   相似文献   

14.
A polynomial optimization problem whose objective function is represented as a sum of positive and even powers of polynomials, called a polynomial least squares problem, is considered. Methods to transform a polynomial least square problem to polynomial semidefinite programs to reduce degrees of the polynomials are discussed. Computational efficiency of solving the original polynomial least squares problem and the transformed polynomial semidefinite programs is compared. Numerical results on selected polynomial least square problems show better computational performance of a transformed polynomial semidefinite program, especially when degrees of the polynomials are larger.  相似文献   

15.
Mathematical Programming - In this work, we derive second-order optimality conditions for nonlinear semidefinite programming (NSDP) problems, by reformulating it as an ordinary nonlinear...  相似文献   

16.
In this paper we study semidefinite programming (SDP) models for a class of discrete and continuous quadratic optimization problems in the complex Hermitian form. These problems capture a class of well-known combinatorial optimization problems, as well as problems in control theory. For instance, they include the MAX-3-CUT problem where the Laplacian matrix is positive semidefinite (in particular, some of the edge weights can be negative). We present a generic algorithm and a unified analysis of the SDP relaxations which allow us to obtain good approximation guarantees for our models. Specifically, we give an -approximation algorithm for the discrete problem where the decision variables are k-ary and the objective matrix is positive semidefinite. To the best of our knowledge, this is the first known approximation result for this family of problems. For the continuous problem where the objective matrix is positive semidefinite, we obtain the well-known π /4 result due to Ben-Tal et al. [Math Oper Res 28(3):497–523, 2003], and independently, Zhang and Huang [SIAM J Optim 16(3):871–890, 2006]. However, our techniques simplify their analyses and provide a unified framework for treating those problems. In addition, we show for the first time that the gap between the optimal value of the original problem and that of the SDP relaxation can be arbitrarily close to π /4. We also show that the unified analysis can be used to obtain an Ω(1/ log n)-approximation algorithm for the continuous problem in which the objective matrix is not positive semidefinite. This research was supported in part by NSF grant DMS-0306611.  相似文献   

17.
We discuss the stochastic linear-quadratic (LQ) optimal control problem with Poisson processes under the indefinite case. Based on the wellposedness of the LQ problem, the main idea is expressed by the definition of relax compensator that extends the stochastic Hamiltonian system and stochastic Riccati equation with Poisson processes (SREP) from the positive definite case to the indefinite case. We mainly study the existence and uniqueness of the solution for the stochastic Hamiltonian system and obtain the optimal control with open-loop form. Then, we further investigate the existence and uniqueness of the solution for SREP in some special case and obtain the optimal control in close-loop form.  相似文献   

18.
Discrete-time Indefinite LQ Control with State and Control Dependent Noises   总被引:3,自引:0,他引:3  
This paper deals with the discrete-time stochastic LQ problem involving state and control dependent noises, whereas the weighting matrices in the cost function are allowed to be indefinite. In this general setting, it is shown that the well-posedness and the attainability of the LQ problem are equivalent. Moreover, a generalized difference Riccati equation is introduced and it is proved that its solvability is necessary and sufficient for the existence of an optimal control which can be either of state feedback or open-loop form. Furthermore, the set of all optimal controls is identified in terms of the solution to the proposed difference Riccati equation.  相似文献   

19.
We study location-aided routing under mobility in wireless ad hoc networks. Due to node mobility, the network topology changes continuously, and clearly there exists an intricate tradeoff between the message passing overhead and the latency in the route discovery process. Aiming to obtain a clear understanding of this tradeoff, we use stochastic semidefinite programming (SSDP), a newly developed optimization model, to deal with the location uncertainty associated with node mobility. In particular, we model both the speed and the direction of node movement by random variables and construct random ellipses accordingly to better capture the location uncertainty and the heterogeneity across different nodes. Based on SSDP, we propose a stochastic location-aided routing (SLAR) strategy to optimize the tradeoff between the message passing overhead and the latency. Our results reveal that in general SLAR can significantly reduce the overall overhead than existing deterministic algorithms, simply because the location uncertainty in the routing problem is better captured by the SSDP model.  相似文献   

20.
In this paper, we propose a new deterministic global optimization method for solving nonlinear optimal control problems in which the constraint conditions of differential equations and the performance index are expressed as polynomials of the state and control functions. The nonlinear optimal control problem is transformed into a relaxed optimal control problem with linear constraint conditions of differential equations, a linear performance index, and a matrix inequality condition with semidefinite programming relaxation. In the process of introducing the relaxed optimal control problem, we discuss the duality theory of optimal control problems, polynomial expression of the approximated value function, and sum-of-squares representation of a non-negative polynomial. By solving the relaxed optimal control problem, we can obtain the approximated global optimal solutions of the control and state functions based on the degree of relaxation. Finally, the proposed global optimization method is explained, and its efficacy is proved using an example of its application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号