首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular model for toughening in double-network hydrogels   总被引:1,自引:0,他引:1  
A molecular mechanism is proposed for the toughness enhancement observed in double-network (DN) hydrogels prepared from poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polyelectrolyte network and poly(acrylamide) (PAAm) linear polymer. It is an extension of the phenomenological model set forth recently by Gong et al. ( Macromolecules 2007, 40, 6658- 6664 ). This mechanism rationalizes the changes in molecular structure of the DN gel constituents observed via in situ neutron scattering measurements, the composition dependence of the solution viscosity, and the thermodynamic interaction parameters of PAMPS and PAAm molecules obtained previously from neutron scattering studies. More specifically, this proposed mechanism provides an explanation for the observed periodic compositional fluctuations in the micrometer range induced by large strain deformation.  相似文献   

2.
Determination of fracture energy of high strength double network hydrogels   总被引:1,自引:0,他引:1  
The fracture energy G of double network (DN) gels, consisting of poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) as the first network and poly(acrylamide) (PAAm) as the second network, was measured by the tearing test as a function of the crack velocity V. The following results were obtained: (i) The fracture energy G ranges from 10(2) to approximately 10(3) J/m2, which is 100-1000 times larger than that of normal PAAm gels (10(0) J/m2) or PAMPS gels (10(-1) J/m2) with similar polymer concentrations to the DN gels. (ii) G shows weak dependence on the crack velocity V. (iii) G at a given value of V increases with decreasing of cross-linking density of the 2nd network. The measured values of G were compared with three theories that describe different mechanisms enhancing the fracture energy of soft polymeric systems. A mechanism relating to a heterogeneous structure of the DN gel is convincing for the remarkable large values of G.  相似文献   

3.
The mechanical strength of double network (DN) gels consisting of highly cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) as the first component and linear polyacrylamide (PAAm) as the second component has been investigated by varying the molecular weight of the second polymer PAAm, M(w). The experimental results reveal that, for toughening of the DN gels, (1) M(w) is one of the dominant parameters; (2) there is a critical value of M(w) = 10(6) for a remarkable enhancement; (3) the fracture energy of DN gels with a M(w) larger than 10(6) reaches a value as high as 10(3) J/m(2). By plotting the strength of DN gels (fracture stress sigma and fracture energy G) against a characteristic parameter of c[eta], where c is the average concentration of PAAm in the DN gels and [eta] is the intrinsic viscosity of PAAm, it is found that the dramatic increase in the mechanical strength of the DN gels occurs above the region where linear PAAm chains are entangled with each other. Thus, we conclude that the entanglement between the second component PAAm plays an important role of the toughening mechanism of DN gels. This result supports the heterogeneous model, which predicts the presence of "voids" of the first network PAMPS with a size much larger than the radius of the second polymer PAAm.  相似文献   

4.
Introduction of soft filler in a hard body, which is one of the common toughening methods of hard polymeric materials, was applied for further toughening of robust double network (DN) hydrogels composed of poly(2‐acrylamido‐2‐methylpropanesulfonic acid) gels (PAMPS gels) as the first component and polyacrylamide (PAAm) as the second component. The fracture energy of the DN gels with the void structure (called void‐DN gels) became twice when the volume fraction of void was 1–3 vol % and the void diameter was much larger than the Flory radius of the PAAm chains. Such toughening was induced by wider range of internal fracture of the PAMPS network derived from partial stress concentration near void structure. Considering the mechanical tests and the dynamic light scattering results, it is implied that the absence of the load‐bearing PAAm structure inside the void is important for the toughening. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1246–1254, 2011  相似文献   

5.
Double-network hydrogels (DN-gels) prepared from the combination of a moderately cross-linked anionic polyelectrolyte (PE) and an uncross-linked linear polymer solution (NP) exhibit mechanical properties such as fracture toughness that are intriguingly superior to that of their individual constituents. The scheme of double-network preparation, however, is not equally successful for all polyelectrolyte/neutral polymer pairs. A successful example is the combination of poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) cross-linked network and linear polyacrylamide (PAAm), which results in DN-gels with fracture strength under compression approaching that of articular cartilage ( approximately 20 MPa). Small-angle neutron scattering was used to determine the thermodynamic interaction parameters for PAMPS and PAAm in water as a first step to elucidate the molecular origin responsible for this superior property. Measurements on PAMPS/PAAm DN-gels and their solution blend counterparts indicate that the two polymers interact favorably with each other while in water. This favorable PAMPS/PAAm interaction given by the condition chi(PE-NP) < chi(PE-water) 相似文献   

6.
A thiol-ene polymerization was accomplished on silicate glass slides to graft a series of homopolymers and copolymers using 3-(mercaptopropyl)trimethoxysilane (MTS) as both a silane coupling agent and initiator. MTS was initially covalently bonded to an acid cleaned glass surface via a classical sol-gel reaction. Poly(acrylic acid) (PAA), poly(acrylamide) (PAAm), poly(methyl acrylate) (PMA), poly(acrylamido-2-methyl-propanesulfonic acid) (PAMPS), and the copolymer poly(AA-co-AAm-co-MA-co-AMPS) were grafted from the thiol group of MTS. The surface chemistry of the MTS modified slides and polymer grafts was characterized with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Surface texture was evaluated with tapping mode atomic force microscopy (TM-AFM). The Owens-Wendt-Kaelble (OWK) and Lifshitz-van der Waals acid-base (LW-AB) methods were used to evaluate surface energies by sessile drop contact angle method. The synthetic approach demonstrated a facile, rapid method for grafting to glass surfaces.  相似文献   

7.
聚乙二醇对PAMPS/PAM双网络水凝胶性能的影响   总被引:2,自引:0,他引:2  
采用紫外光引发聚合制备了聚乙二醇(PEG)改性的聚(2-丙烯酰胺-2-甲基丙磺酸)/聚丙烯酰胺(PAMPS/PAM)双网络水凝胶.测定并比较了PEG改性前后双网络水凝胶的溶胀动力学以及单网络水凝胶中丙烯酰胺(AM)的吸收量;用扫描电子显微镜(SEM)观察了单网络水凝胶的结构;测定PEG改性前后双网络水凝胶的压缩及拉伸性能.结果表明,经PEG改性后的双网络水凝胶有较高的溶胀比;改性后单网络水凝胶更易吸收AM;改性后双网络水凝胶压缩形变率达到90%以上、拉伸形变率是未改性双网络水凝胶的2倍.  相似文献   

8.
A novel one-step synthesis of hydrophobically modified polyacrylamide (PAAm) is described. Triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PEO-PPO-PEO) are grafted onto PAAm in melts of acrylamide in the presence of benzoyl peroxide. The resulting PEO-PPO-PEO-g-PAAm graft copolymers are capable of self-assembly in response to temperature changes in aqueous media.  相似文献   

9.
Chiral poly(acrylamide) macromonomers (PMB‐1, PMB‐2, PPAE‐1, and PPAE‐2) were synthesized from 2‐methacryloyloxyethyl isocyanate and prepolymers, that is, poly[(S)‐methylbenzyl acrylamide] or poly(L ‐phenylalanine ethylester acrylamide with a terminal carboxylic acid or hydroxy group. Radical homopolymerizations of poly(acrylamide) macromonomers were carried out under several conditions to obtain the corresponding optically active polymers. A strong temperature dependence on the specific optical rotation was observed for poly(PPAE‐2) in comparison with that for the corresponding prepolymer. This might have resulted from a change in the conformation caused by hydrogen bonds between polymer‐graft branches in the polymacromonomer. Radical copolymerizations of poly(acrylamide) macromonomers with styrene and methyl methacrylate were performed with azobisisobutyronitrile in tetrahydrofuran at 60 °C. Chiroptical properties of the copolymers were slightly influenced by comonomer units. Chiral stationary phases were prepared by the radical polymerization of poly(acrylamide) macromonomers in the presence of silica gel containing vinyl groups on the surface. Some racemic compounds such as menthol and mandelic acid were resolved on the chiral stationary phases for high‐performance liquid chromatography. The conformation based on hydrogen bonds between polymer‐graft branches in the polymacromonomers may play an important role in chiral discrimination. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1726–1741, 2002  相似文献   

10.
PVA改性PAMPS-PAM超高力学性能双网络水凝胶的制备   总被引:2,自引:0,他引:2  
田帅  单国荣  王露一 《高分子学报》2010,(10):1175-1179
采用紫外光引发聚合制备了聚乙烯醇(PVA)改性的聚(2-丙烯酰胺基-2-甲基丙磺酸)-聚丙烯酰胺(PAMPS-PAM)双网络(DN)水凝胶.测定并比较了PVA改性前后PAMPS-PAM双网络水凝胶的溶胀动力学;通过扫描电子显微镜(SEM)观察了单网络水凝胶的结构;测定PVA改性前后PAMPS-PAM双网络水凝胶的压缩及拉伸性能.结果表明,经PVA改性后的PAMPS-PAM双网络水凝胶有较高的溶胀比;0.82%PVA用量的PAMPS-PAM双网络水凝胶在90%压缩形变率下仍保持完整、最大拉伸应力达到0.5 MPa,大幅提高PAMPS-PAM双网络水凝胶的力学性能.  相似文献   

11.
Novel interpenetrating networks (IPNs) hydrogels responsive to temperature were prepared in situ by liquid-phase photopolymerization. The first network of the IPNs (poly isopropyl acrylamide) were formed with a special kind of hectorite (Laponite XLS) modified by tetrasodium pyrophosphate as cross-linker and 2-oxogultaric acid as photoinitiator. The samples were subsequently immersed in an acrylamide (AAm) aqueous solution for at least one day for preparing IPNs hydrogels, in which acrylamide aqueous solution containing N,N′-Dimetyl acrylamide (MBAA) as cross-linker and 2-oxogultaric acid as photoinitiator. Then the second networks were in situ formed by introducing ultraviolet light irradiated PNIPAAm gels. The swelling/deswelling behaviors of IPNs hydrogels were measured. Compared with the corresponding nanocomposite PNIPAAm hydroges(NC hydrogels), chemically cross-linked PNIPAAm and PAAm IPNs hydrogels, the results indicate that the new IPN hydrogel has a faster deswelling rate above its LCST (≈32 °C). The effect was explained as being an additional contribution of the PAAm chains in IPN hydrogels, which may act as a water-releasing channel when the hydrophobic aggregation of PNIPA takes place.  相似文献   

12.
采用分步法用电子加速器辐射合成了聚丙烯酰胺(PAAm)/聚异丙基丙烯酰胺(PNIPAAm)互穿网络水凝胶,并考察了温度、pH值、离子强度对其溶胀性能的影响.研究表明:互穿水凝胶具有温度敏感性,且其体积相变与互穿网络中PAAm和PNIPAAm含量有关,随着网络中PAAm含量的增加水凝胶的体积相变趋于平缓,可以通过改变PAAm和PNIPAAm的组成比来控制水凝胶的体积相变行为.此外,互穿水凝胶还具有pH敏感性和一定的抗盐性.  相似文献   

13.
Three series of semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature‐induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N‐isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi‐interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004  相似文献   

14.
聚丙烯酰胺(PAAm)和聚乙二醇(PEG)两种水溶液混合时能形成双水相体系,其中上层为PEG富集相,下层为PAAm和PEG的混合相.用凝胶渗透色谱(GPC)法和浊度滴定法研究了PAAm-PEG-H2O双水相体系的相图,结果表明,随着PEG分子量的升高,体系的分相浓度下降.在PAAm-PEG20000-H2O体系中,随着体系温度升高,分相浓度先下降后升高,55℃时分相浓度最低.丙烯酰胺(AAm)单体能在两相中发生相分配,分配系数随着PAAm浓度和平衡温度的增加而增大,随着PEG浓度的增加而下降.  相似文献   

15.
Poly(ε‐caprolactone) films (TONE® 787) were irradiated by electron beam in air prior to grafting in aqueous solutions of acrylamide. The grafting kinetics and molecular weight of the grafted poly(acrylamide) chains were studied with irradiation doses between 2.5 and 20 Mrad and in the Mohr's salt concentration range of 0.0025–1 wt %. The grafting rate and yield were strongly dependent on the Mohr's salt concentration. By molecular weight analysis of grafted poly(acrylamide) chains, it was shown that the molecular weight is approximately proportional to the mass of the grafted PAAm. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1643–1649, 1999  相似文献   

16.
The utility of thermoresponsive hydrogels, such as those based on poly(N‐isopropylacrylamide) (PNIPAAm), is severely limited by their deficient mechanical properties. In particular, the simultaneous achievement of high strength and stiffness remains unreported. In this work, a thermoresponsive hydrogel is prepared having the unique combination of ultrahigh compressive strength (≈23 MPa) and excellent compressive modulus (≈1.5 MPa). This is accomplished by employing a double network (DN) design comprised of a tightly crosslinked, highly negatively charged 1st network based on poly(2‐acrylamido‐2‐methylpropane sulfonic acid (PAMPS) and a loosely crosslinked, zwitterionic 2nd network based on a copolymer of thermoresponsive NIPAAm and zwitterionic 2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide (MEDSAH). Comparison to other DN designs reveals that this PAMPS/P(NIPAAm‐co‐MEDSAH) DN hydrogel's remarkable properties stem from the intra‐ and internetwork ionic interactions of the two networks. Finally, this mechanically robust hydrogel retains the desirable thermosensitivity of PNIPAAm hydrogels, exhibiting a volume phase transition temperature of ≈35 °C.  相似文献   

17.
Graft polymerization of acrylamide (AAm) was performed onto the surface of a poly(ethylene terephthalate) (PET) film with the simultaneous UV irradiation method but using no photosensitizer and without degassing. To examine whether polyacrylamide (PAAm) was introduced into the bulk place of PET film by the surface graft polymerization, an x-ray photoelectron spectroscopic (XPS) study was performed on the PAAm-grafted PET films. The distribution of grafted PAAm chains on and in the PET films was estimated from the PAAm/PET ratio calculated from the XPS spectra of PET films with different amounts of grafted PAAm. The results clearly demonstrate that graft polymerization has actually occurred not merely on the outermost surface but also within the thin surface region of the PET film. In addition, the XPS analysis revealed that the PET component was always present in the grafted surface region by a mole fraction of 0.1 to 0.05 even when the amount of PAAm grafted was larger than 10 μg/cm2.  相似文献   

18.
We report the preparation of in-plane density gradients of amino-terminated molecules and gold particles through derivatization of laterally varying thickness gradients of poly(acrylic acid) (PAA) or poly(acrylamide) (PAAm) films. PAA and PAAm gradients were formed by Zn(II)-catalyzed electropolymerization of acrylic acid (AA) or acrylamide (AAm) in the presence of an in-plane electrochemical potential gradient applied to Au or indium-tin-oxide (ITO) working electrodes. PAA thickness gradients were converted into density gradients of fluorocarbons or biocompatible groups by derivatizing with NH(2)CH(2)(CF(2))(6)CF(3) or an Arg-Gly-Asp (RGD)-containing peptide, respectively. X-ray photoelectron spectroscopy (XPS) and XPS imaging were used to characterize the modified PAA gradients. Transition regions as narrow as 104 mum were achieved for fluorocarbon gradients. PAAm gradients were treated with gold particles to form a density gradient of gold particles. Surface plasmon resonance imaging and scanning electron microscopy (SEM) as well as UV-visible absorption measurements were used to characterize the gold particle density gradients. It is likely that the gold particles were attached both on the surface and inside the PAAm film.  相似文献   

19.
Hyperbranching poly(allylamine) (PAAm) and poly(ethylene glycol) (PEG) on silicon and its effect on protein adhesion was investigated. Hyperbranching involves sequential grafting of polymers on a surface with one of the components having multiple reactive sites. In this research, PAAm provided multiple amines for grafting PEG diacrylate. Current methodologies for generating PEG surfaces include PEG-silane monolayers or polymerized PEG networks. Hyperbranching combines the nanoscale thickness of monolayers with the surface coverage afforded by polymerization. A multistep approach was used to generate the silicon-supported hyperbranched polymers. The silicon wafer surface was initially modified with a vinyl silane followed by oxidation of the terminal vinyl group to present an acid function. Carbodiimide activation of the surface carboxyl group allowed for coupling to PAAm amines to form the first polymer layer. The polymers were hyperbranched by grafting alternating PEG and PAAm layers to the surface using Michael addition chemistry. The alternating polymers were grafted up to six total layers. The substrates remained hydrophilic after each modification. Static contact angles for PAAm (32-44 degrees) and PEG (33-37 degrees) were characteristic of the corresponding individual polymer (30-50 degrees for allylamine, 34-42 degrees for PEG). Roughness values varied from approximately 1 to 8 nm, but had no apparent affect on protein adhesion. Modifications terminating with a PEG layer reduced bovine serum albumin adhesion to the surface by approximately 80% as determined by ELISA and radiolabel binding studies. The hyperbranched PAAm and PEG surfaces described in this paper are nanometer-scale, multilayer films capable of reducing protein adhesion.  相似文献   

20.
The static and dynamic mechanical behavior of two double network (DN) hydrogels, alginate/polyacrylamide (PAAm) hybrid hydrogel and sodium poly(2-acrylamido-2-methylpropanesulfonic acid) PNaAMPS/PAAm, is presented to understand the role played by different cross-linked networks on fracture and recovery properties. Although with a smaller modulus, alginate/PAAm hybrid hydrogel had a much higher stretchability, whether with or without notches, in the tensile tests. Continuous step strain measurement by using a strain-controlled parallel-plate rheometer showed that alginate/PAAm can immediately recover its mechanical properties after breakdown, while PNaAMPS/PAAm didn't show mechanical recovery at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号