首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Charge reduction and desorption kinetics of ions and neutral molecules produced by soft-landing of mass-selected singly and doubly protonated Gramicidin S (GS) on different surfaces was studied using time dependant in situ secondary ion mass spectrometry (SIMS) integrated in a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) research instrument. Soft-landing targets utilized in this study included inert self-assembled monolayers (SAMs) of 1-dodecane thiol (HSAM) and its fluorinated analog (FSAM) on gold and hydrophilic carboxyl-terminated (COOH-SAM) and amine-terminated (NH2-SAM) surfaces. We observed efficient neutralization of soft-landed ions on the COOH-SAM surface, partial retention of only one proton on the HSAM surface, and efficient retention of two protons on the FSAM surface. Slow desorption rates measured experimentally indicate fairly strong binding between peptide molecules and SAM surfaces with the binding energy of 20–25 kcal/mol.  相似文献   

2.
The adsorption state and thermal stability of V(benzene)2 sandwich clusters soft-landed onto a self-assembled monolayer of different chain-length n-alkanethiols (Cn-SAM, n = 8, 12, 16, 18, and 22) were studied by means of infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). The IRAS measurement confirmed that V(benzene)2 clusters are molecularly adsorbed and maintain a sandwich structure on all of the SAM substrates. In addition, the clusters supported on the SAM substrates are oriented with their molecular axes tilted 70-80 degrees off the surface normal. An Arrhenius analysis of the TPD spectra reveals that the activation energy for the desorption of the supported clusters increases linearly with the chain length of the SAMs. For the longest chain C22-SAM, the activation energy reaches approximately 150 kJ/mol, and the thermal desorption of the supported clusters can be considerably suppressed near room temperature. The clear chain-length-dependent thermal stability of the supported clusters observed here can be explained well in terms of the cluster penetration into the SAM matrixes.  相似文献   

3.
Gas-phase synthesized vanadium-benzene 1:2 (VBz(2)) sandwich clusters were size-selectively deposited onto bare gold and long-chain n-alkanethiolate [-S-(CH(2))(n-1)-CH(3); n = 16, 18, and 22] self-assembled monolayer (SAM)-coated gold substrates under ultrahigh vacuum (UHV) conditions. Investigation of the resulting deposited clusters was performed by infrared reflection absorption spectroscopy (IRAS) and thermal desorption spectroscopy (TDS). The IR frequencies of the soft-landed VBz(2) clusters show excellent agreement with the fundamentals reported in IR data of VBz(2) in an argon matrix. The analysis of IRAS spectra reveals that while there was no orientational preference of the VBz(2) clusters on a bare gold substrate, the VBz(2) clusters deposited onto the SAM substrates were highly oriented with the molecular axis 70-80 degrees tilted off the surface normal. In addition, analysis of TDS spectra revealed unusually large adsorption heats of the physisorbed VBz(2) clusters. The present results are explained by cluster penetration into the long-chain alkanethiolate SAM and for the first time demonstrate the matrix isolation of gas-phase organometallic clusters around room temperature.  相似文献   

4.
We present an improved method to prepare carboxylic acid (COOH) and amine (NH2) terminated self-assembled monolayers (SAMs) of alkanethiolates. In this method, a small amount of CF3COOH (for COOH-SAM) or N(CH2CH3)3 (for NH2-SAM) is added into the ethanolic solution of alkanethiols during SAM formation. The freshly formed COOH- and NH2-SAMs are then rinsed with an ethanolic solution of NH4OH or CH3COOH, respectively. Both SAMs prepared with the improved method show better quality in terms of surface chemical composition, roughness, and wettability as measured by X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle, respectively. The formation of better SAMs can be attributed to the disruption of interplane hydrogen bonds.  相似文献   

5.
Adsorption of ethylene oxide, CH(2)CH(2)O (EtO), on a Au(211) stepped surface was studied by temperature programmed desorption (TPD) and Fourier transform infrared reflection-absorption spectroscopy (FT-IRAS). Ethylene oxide was completely reversibly adsorbed, and desorbed molecularly during TPD following adsorption on Au(211) at 85 K. EtO TPD peaks appeared at 115 K from the multilayer film and 140 and 170 K from the monolayer. Desorption at 140 K was attributed to EtO desorption from terrace sites, and that at 170 K to EtO desorption from step sites. Desorption activation energies and corresponding adsorption energies were estimated to be 8.4 and 10.3 kcal mol(-1), respectively. The EtO ring (C(2)O) deformation band appeared in IRAS at 865 cm(-1) for EtO in multilayer films and when adsorbed in the monolayer at terrace sites. The stronger chemisorption bonding of EtO at Au step sites slightly weakens the bonding within the molecule and causes a small red-shift of this band to 850 cm(-1) for adsorption at step sites. EtO presumably binds via the oxygen atom to the surface, and observation of the EtO-ring absorption band in IRAS establishes that the molecular ring plane of EtO adsorbed at step and terrace sites is nearly upright with respect to the crystal surface plane.  相似文献   

6.
Gold nanoparticles (AuNPs) with 14, 25 and 40nm diameters were functionalized with different chain length (C6, C8, C11 and C16) carboxylic acid terminated alkanethiol self-assembled monolayers (COOH-SAMs). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to examine the changes in surface chemistry as both AuNP diameter and SAM chain length were varied. COOH-SAMs on flat gold surfaces were also examined and compared to the COOH-SAM on AuNP results. For a given surface, as the COOH-SAM chain length increased the XPS C/Au atomic ratio increased due to an increased number of carbon atoms per molecule in the overlayer and an increased attenuation of the Au substrate signal. For the C16 COOH-SAMs, as the size of AuNPs decreased the XPS C/Au atomic ratio and the apparent SAM thickness increased due to the increased curvature of the smaller AuNPs. The C16 COOH-SAMs on the flat Au had the lowest XPS C/Au atomic ratio and apparent SAM thickness of any C16 COOH-SAM covered Au surface. The effective take-off angles of the COOH-SAMs were also calculated by comparing the apparent thickness of COOH-SAMs with literature values. The effective take-off angle for C16 COOH-SAM on 14nm, 25nm and 40nm diameter AuNPs and flat Au were found to be 57°, 53°, 51° and 39°, respectively, for data acquired in a mode that collects a wide range of photoelectron take-off angles. The effective take-off angle for C16 COOH-SAM on 14nm AuNP and flat Au decreased to 52° and 0°, respectively, for data acquired in a mode that collects a narrow range of photoelectron take-off angles. The ToF-SIMS results showed similar changes in surface chemistry with COOH-SAM chain length and AuNP size. For example, the ratio of the sum of the C(1-4)H(x)O(y) positive ion intensities to the sum of the Au-containing positive ions intensities increased with decreasing AuNP size and increasing COOH-SAM chain length. Fourier transform IR spectroscopy in the attenuated total reflectance mode (FTIR-ATR) was used to characterize the crystallinity of the COOH-SAMs. The CH(2) stretching frequencies decreased with increasing COOH-SAM chain length on flat Au. The C16 COOH-SAM on the 14nm AuNPs exhibited a crystalline-like CH(2) stretching frequency. The size, size distribution, shapes and solution stability of AuNPs were investigated with transmission electron microscopy (TEM) and UV/VIS spectroscopy. As the average diameter of the AuNPs decreased the size distribution became narrower and the shape became more spherical.  相似文献   

7.
Coordination of nitric oxide (NO) to a self-assembled monolayer (SAM) of a triruthenium (Ru(3)) cluster, [Ru(3)(micro(3)-O)(micro-CH(3)COO)(6)(CO)(L(1))(L(2))] (0) (L(1) = [(NC(5)H(4))CH(2)NHC(O)(CH(2))(10)S-](2), L(2) = 4-methylpyridine), on a gold electrode surface has been studied by electrochemical and in situ infrared (IR) spectroscopic measurements. Ligand substitution reaction of NO for carbon monoxide (CO) ligands in the SAM strongly depends on the oxidation state of the terminal Ru(3) cluster. NO can be introduced into the Ru(3) cluster in the SAM with a high yield after one-electron oxidation of the Ru(3) core to a (III,III,III) oxidation state, while no coordination reaction occurs at the initial oxidation state (II,III,III) of the Ru(3) cluster. The kinetics of the NO coordination and desorption processes is also evaluated by time-resolved in situ IR spectroscopy. Finally, we demonstrate that the SAM with NO/CO randomly mixed ligands at a desired ratio can be constructed on the gold surface by tuning a suitable oxidation state of the Ru 3 cluster under electrochemical control.  相似文献   

8.
为了更好地理解贻贝在表面的黏附机理,实现水下胶黏,采用分子动力学方法研究了多巴在自组装膜上的黏附性:采用伞形取样和加权柱状图分析方法计算了多巴在不同自组装膜表面的黏附自由能,使用拉伸分子动力学模拟研究了多巴在不同自组装膜表面上黏附后的脱附力.结果表明,多巴在带负电的羧基自组装膜上的黏附能比在带正电的氨基自组装膜上的大,多巴更容易黏附到带负电表面;多巴在带电表面的黏附能比未带电表面的黏附能更强,表明在带电表面黏附更稳定.进一步分析了多巴在不同表面的取向分布,发现多巴与不同表面相互作用的方式不同:与疏水表面主要通过苯环相互作用;与亲水表面主要通过羟基相互作用;与负电表面主要通过氨基相互作用;与正电表面主要通过羧基相互作用.通过模拟比较了多巴在不同自组装膜上的脱附力,发现多巴在带电表面的脱附力比在未带电表面的大,与黏附能的趋势一致.对比4种非带电表面的脱附力,发现多巴在疏水性甲基自组装膜表面的脱附力最大,黏附更稳定,随着表面疏水性的增加,脱附力增大,黏附稳定性增强.本工作可为研发新型水下胶黏剂提供理论指导.  相似文献   

9.
Preparation and characterization of silica supported Au-Pd model catalysts   总被引:1,自引:0,他引:1  
Au-Pd bimetallic model catalysts were synthesized as alloy clusters on SiO2 ultrathin films under ultrahigh vacuum (UHV) conditions. The surface composition and morphology were characterized with low energy ion scattering spectroscopy (LEIS), infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). Relative to the bulk, the surface of the clusters is enriched in Au. With CO as a probe, IRAS and TPD were used to identify isolated Pd sites at the surface of the supported Au-Pd clusters. Ethylene adsorption and dehydrogenation show a clear structure-reactivity correlation with respect to the structure/composition of these Au-Pd model catalysts.  相似文献   

10.
The organothiol 4-mercaptopyridine (pyS) has been used extensively as facilitator for the assessment of heterogeneous electron transfer reaction of cytochrome c (cyt c). Its efficiency, however, is strongly affected by the instability of the adlayer due to the C-S bond cleavage. The K(4)[Ru(CN)(5)(pyS)].3H(2)O complex was synthesized and characterized aiming its utilization as an inorganic self-assembled monolayer (SAM) that would enhance the gold adlayer stability. The SAM formed by this complex onto gold (RupySAu) was characterized by spectroscopic (FTIRRAS and SERS) and electrochemical (LSV) techniques. The ex situ vibrational SERS and FTIRRAS spectra data of this SAM formed onto gold suggest a sigma interaction between the gold and sulfur atoms of the complex, inducing a perpendicular arrangement in relation to the surface normal. Additionally, SERS and FTIRRAS spectra performed for freshly prepared RupySAu adlayer and for large immersion times in the precursor solution have not shown any significant change that would reflect the degradation of the adlayer. The LSV desorption curves of this SAM indicate an enhancement in the C-S bond strength of the pyS ligand when coordinated to the [Ru(CN)(5)](3-) moiety. Comparatively to the data obtained for the desorption process of the pyS monolayer, the reductive desorption potential, E(rd), of the RupySAu presents a shift of -17 mV. This bond strength intensification leads to an increase in the stability of the monolayer. The voltammetric curves of cyt c carried out with the RupySAu electrode showed electrochemical parameters consistent with those reported for the native protein, as well as the maintenance of the electrochemical kinetic data after repetitive cycles. The results all together suggest that the pi back-bonding effect from the [Ru(CN)(5)](3-) metal center plays an important role in the stability of the RupySAu adlayer, improving the assessment of the cyt c heterogeneous electron transfer reaction.  相似文献   

11.
A study of the deposition of heterometallic antiferromagnetically coupled rings onto gold surfaces is reported. Two new {Cr7Ni} rings, [NH2nPr2][Cr7NiF8(3-tpc)16] (1) (where 3-tpc=3-thiophenecarboxylate) and [nBuNH2CH2CH2SH] [Cr7NiF8(O2CtBu)16] (2) have been made and structurally characterized. They have been deposited from the liquid phase on Au(111) and the adsorbed molecules compared by means of scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS). In both cases a two-dimensional distribution of individually accessible {Cr7Ni} heterometallic rings on the gold surface has been obtained, exploiting the direct grafting of sulfur-functionalized clusters. There is a competition between the chemisorption of the {Cr7Ni} clusters and a thiolic self-assembled monolayer (SAM) formed by free ligands. In 2, the presence of a single sulfur ligand should force the molecule to graft with the ring axis normal to the surface. The cluster stability in the STM images and the S-2p energy positions demonstrate, for both functionalizations, the strength of the grafting with the gold surface.  相似文献   

12.
Insertion of benzonitrile and acetonitrile into the U-C bond of [U(Tp(Me2))Cl(2)(CH(2)SiMe(3))](Tp(Me2)= HB(3,5-Me(2)pz)(3)) gives the ketimide complexes [U(Tp(Me2))Cl(2){NC(R)(CH(2)SiMe(3))}](R = Ph (1); Me (2)). The identity of complex was ascertained by a single-crystal X-ray diffraction study. In the solid state exhibits octahedral geometry with a short U-N bond length to the ketimide ligand. We also report herein the synthesis and the X-ray crystal structures of the uranium amide complexes [U(Tp(Me2))Cl(2)(NR(2))](R = Et (3); Ph (4)). A detailed comparison of the U-N bond lengths in these compounds with other known U-N (and Th-N) distances in amide and ketimide actinide(IV) complexes is performed, confirming the short character of the U-N bond length in 1.  相似文献   

13.
为使不对称Ru-Fe化合物能在表面上自组装形成单分子膜,对trans-RuCl(dppm)2(C≡CFc)[Fc=C5H4FeC5H5,dppm=(C6H5)2PCH2P(C6H5)2](1)进行修饰,得到Ru(dppm)2(C≡CFc)(C≡CPhOCH3)(2),[Ru(dppm)2(C≡CFc)(N≡CCH2CH2NH2)][PF6](3)和[Ru(dppm)2(C≡CFc)(N≡CCH2CH2NHC(O)·(CH2)10SH)][PF6](4),并详细研究了该系列化合物的电化学性质.循环伏安结果显示出Ru周围配体得失电子能力的差别,直接影响了Ru中心的氧化-还原性,但这种影响并没有通过共轭的炔键传递到二茂铁中的Fe中心.化合物4可以在Au表面上自组装形成稳定、有序的单分子膜.还利用循环伏安法研究了单分子膜的形成过程及其表面覆盖率.  相似文献   

14.
The adsorption and reaction of methanol (CH(3)OH) on stoichiometric (TiO(2)-terminated) and reduced SrTiO(3)(100) surfaces have been investigated using temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and first-principles density-functional calculations. Methanol adsorbs mostly nondissociatively on the stoichiometric SrTiO(3)(100) surface that contains predominately Ti(4+) cations. Desorption of a monolayer methanol from the stoichiometric surface is observed at approximately 250 K, whereas desorption of a multilayer methanol is found to occur at approximately 140 K. Theoretical calculations predict weak adsorption of methanol on TiO(2)-terminated SrTiO(3)(100) surfaces, in agreement with the experimental results. However, the reduced SrTiO(3)(100) surface containing Ti(3+) cations exhibits higher reactivity toward adsorbed methanol, and H(2), CH(4), and CO are the major decomposition products. The surface defects on the reduced SrTiO(3)(100) surface are partially reoxidized upon saturation exposure of CH(3)OH onto this surface at 300 K.  相似文献   

15.
A diverse array of unsaturated C1 (methylene and methylidyne) and C2 (vinyl, vinylidene, ethylidene, and ethylidyne) bound to metal center(s) and surfaces has received much attention. In sharp contrast to the effort devoted to C1 and C2 ligands, complexes or surfaces bearing C3 fragments have been less explored, especially the M-C3H3 systems, which include propargyl (M-CH2C[triple bond]CH), allenyl (M-CH=C=CH2), and acetylide (M-C[triple bond]CCH3) forms. To understand the bonding and reactivity of these C3 species appended to an extended metal structure, proprargyl bromide (Br-CH2C[triple bond]CH) was utilized as a precursor to generate C3H3 fragments on a Ag(111) surface under ultrahigh vacuum conditions. The molecular transformation process was explored by a combination of temperature-programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and X-ray photoemission spectroscopy (XPS) techniques. In addition, density functional theory (DFT) calculations were conducted to obtain the optimized geometries and energies for the various surface intermediates. The computed IR spectra facilitated the vibrational mode assignments. TPD spectra show that C3H3(ad) self-hydrogenates to C3H4 around 300 and 475 K, respectively. In addition to hydrogenation, a C-C coupling product C6H6 (2,4-hexadiyne) is also unveiled as part of the desorption feature at 475 K. Identification of the possible C3H4 isomers (propyne and/or allene) was equivocal, but it was circumvented by using an alpha,alpha-dimethyl-substituted propargylic species--(CH3)2(alpha)C-C[triple bond]CH, which results in hydrogenation products, alkynic (CH3)2CH-C[triple bond]CH and allenic (CH3)2C=C=CH2, distinguishable by the mass spectrometry. The substitution experiments clarify that in the normal case the convoluted TPD feature around 300 K, in fact, consists of both allene at 260 K and propyne at 310 K, while the last hydrogenation product at 475 K is solely propyne. The RAIR spectroscopy demonstrates that at 200 K C3H3(ad) on Ag(111) readily adopts the allenyl formalism involving concerted CBr bond scission and [1,3]-sigmatropic migration (i.e., Br-*CH2C[triple bond]CH --> *CH2=C=CH-Ag), in which the sigma bond moves to a new metal location across the pi-periphery. Single hydrogen incorporation to the alpha-carbon of the surface allenyl rationalizes the allene formation at 260 K. When the surface is heated to the range of 250-300 K, both RAIR and XP spectra reveal drastic changes, indicative of a new species whose spectral characteristics could be duplicated by separate measurements from 1-propyn-1-yl iodide (CH3-C[triple bond]C-I) being a direct source for the surface methylacetylide (CH3-C[triple bond]C-Ag). It is thus suggested that allenyl is further reorganized to render acetylide presumably via [1,3]-hydrogen shift (i.e., *CH2=C=CH-Ag --> *CH3=C[triple bond]C-Ag). The presence of this third Ag-C3H3 isomeric form demonstrates an unprecedented propargyl-allenyl-acetylide multiple rearrangements on a metal surface. Migration of the triple bond from the remote terminal position into the chain, through the stage of allenic structure, is driven by thermodynamic stabilities, supported by the DFT total energy calculations. Consequently, the evolutions of propyne at 310 and 475 K, as well as 2,4-hexadiyne (bismethylacetylide), can all be reasoned out.  相似文献   

16.
Zhao YD  Pang DW  Hu S  Wang ZL  Cheng JK  Dai HP 《Talanta》1999,49(4):751-756
The covalent immobilization of DNA onto self-assembled monolayer (SAM) modified gold electrodes (SAM/Au) was studied by X-ray photoelectron spectrometry and electrochemical method so as to optimize its covalent immobilization on SAMs. Three types of SAMs with hydroxyl, amino, and carboxyl terminal groups, respectively, were examined. Results obtained by both X-ray photoelectron spectrometry and cyclic voltammetry show that the largest covalent immobilization amount of dsDNA could be gained on hydroxyl-terminated SAM/Au. The ratio of amount of dsDNA immobilized on hydroxyl-terminated SAMs to that on carboxyl-terminated SAMs and to that on amino-terminated SAMs is (3-3.5): (1-1.5): 1. The dsDNA immobilized covalently on hydroxyl-terminated SAMs accounts for 82.8-87.6% of its total surface amount (including small amount of dsDNA adsorbed). So the hydroxyl-terminated SAM is a good substrate for the covalent immobilization of dsDNA on gold surfaces.  相似文献   

17.
Two different tyrosine derivatives, one with the OH group free and one with the OH group phosphorylated, linked to 3-mercaptopropionic acid through an amide bond are adsorbed to gold surfaces. The adsorbates are studied by means of X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IRAS). The techniques are used to investigate the coordination to the surface and the molecular orientation of adsorbates relative to the surface. Molecular surface interactions, causing chemical shifts in the core level XPS spectra of the adsorbates on gold, are investigated using multilayer films as references. Angle-dependent XPS, XPS(theta), and IRAS are used to estimate molecular orientation relative to the surface. The tyrosine derivatives adsorb chemically to the surface through the sulfur atoms and highly organized monolayers are formed with the OH and the PO(2-)(3) exposed to the air/vacuum interface.  相似文献   

18.
Dimethyl gold complexes bonded to partially dehydroxylated MgO powder calcined at 673 K were synthesized by adsorption of Au(CH3)2(acac) (acac is C5H7O2) from n-pentane solution. The synthesis and subsequent decomposition of the complexes by treatment in He or H2 were characterized with diffuse reflectance Fourier transform infrared (DRIFT), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopies. The XANES results identify Au(III) in the supported complexes, and the EXAFS and DRIFTS data indicate mononuclear dimethyl gold complexes as the predominant surface gold species, consistent with the lack of Au-Au contributions in the EXAFS spectrum and the presence of nu(as)(CH3) and nu(s)(CH3) bands in the IR spectrum. EXAFS data show that each complex is bonded to two oxygen atoms of the MgO surface at an Au-O distance of 2.16 angstroms. The DRIFT spectra show that reaction of Au(CH3)2(acac) with MgO at room temperature also formed Mg(acac)2 and H(acac) species on the support. Treatment of the dimethyl gold complexes in He or H2 at increasing temperatures varying from 373 to 573 K removed CH3 ligands and caused aggregation forming zerovalent gold nanoclusters of increasing size, ultimately with an average diameter of about 30 angstroms. Analysis of the gas-phase products during the genesis of the gold clusters indicated formation of CH4 (consistent with removal of CH3 groups) and CO2 at 473-573 K, associated with decomposition of the organic ligands derived from acac species. O2 and CO2 were also formed in the decomposition of ubiquitous carbonates present on the surface of the MgO support.  相似文献   

19.
Gold-isocyanide complexes XAu(RNC) (X = halide, pseudohalide, R = alkyl, aryl) and water soluble gold-carbene complexes XAuC(NHPh)[MeN(CH(2)CH(2)O)(n)Me] (X = Cl, n = 1-11) have been prepared and evaluated as substrates for the direct laser writing of gold decoration onto ceramics.  相似文献   

20.
Photolithographic attachment of functional organic molecules via ester or amide linkages to self-assembled monolayers (SAMs) on gold thin films was achieved by employing a novel photoreactive surface anchor, 7-diazomethylcarbonyl-2,4,9-trithiaadmantane. The photoreactive SAM was prepared by the spontaneous physical adsorption of the photoreactive surface anchor onto gold surfaces. The alpha-diazo ketone moiety of the SAM was found to display the classical Wolff rearrangement reactivity to produce a ketene intermediate on the exposed area. Organic molecules such as alcohols and amines can thus be attached to the gold surfaces selectively by the facile in situ formation of ester or amide linkages. The structure and reactivity of the photoreactive surface anchor were characterized by real-time FT-IR, fluorescence, and polarization modulation infrared reflectance absorption spectroscopy (PM-IRRAS). The Wolff rearrangement reactivity of the SAM suggested that a "surface-isolated" carbonylcarbene may be generated when the SAM was exposed to 255-nm irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号