首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this paper we develop a discrete Hierarchical Basis (HB) to efficiently solve the Radial Basis Function (RBF) interpolation problem with variable polynomial degree. The HB forms an orthogonal set and is adapted to the kernel seed function and the placement of the interpolation nodes. Moreover, this basis is orthogonal to a set of polynomials up to a given degree defined on the interpolating nodes. We are thus able to decouple the RBF interpolation problem for any degree of the polynomial interpolation and solve it in two steps: (1) The polynomial orthogonal RBF interpolation problem is efficiently solved in the transformed HB basis with a GMRES iteration and a diagonal (or block SSOR) preconditioner. (2) The residual is then projected onto an orthonormal polynomial basis. We apply our approach on several test cases to study its effectiveness.  相似文献   

2.
In this paper, two ways of the proof are given for the fact that the Bernstein-Bézier coefficients (BB-coefficients) of a multivariate polynomial converge uniformly to the polynomial under repeated degree elevation over the simplex. We show that the partial derivatives of the inverse Bernstein polynomial A n (g) converge uniformly to the corresponding partial derivatives of g at the rate 1/n. We also consider multivariate interpolation for the BB-coefficients, and provide effective interpolation formulas by using Bernstein polynomials with ridge form which essentially possess the nature of univariate polynomials in computation, and show that Bernstein polynomials with ridge form with least degree can be constructed for interpolation purpose, and thus a computational algorithm is provided correspondingly.  相似文献   

3.
We consider an algebraic method for reconstruction of a harmonic function in the unit disk via a finite number of values of its Radon projections. The approach is to seek a harmonic polynomial which matches given values of Radon projections along some chords of the unit circle. We prove an analogue of the famous Marr’s formula for computing the Radon projection of the basis orthogonal polynomials in our setting of harmonic polynomials. Using this result, we show unique solvability for a family of schemes where all chords are chosen at equal distance to the origin. For the special case of chords forming a regular convex polygon, we prove error estimates on the unit circle and in the unit disk. We present an efficient reconstruction algorithm which is robust with respect to noise in the input data and provide numerical examples.  相似文献   

4.
We propose and validate a simple numerical method that finds an approximate solution with any given accuracy to the Dirichlet boundary value problem in a disk for a homogeneous equation with the Laplace operator. There are many known numerical methods that solve this problem, starting with the approximate calculation of the Poisson integral, which gives an exact representation of the solution inside the disk in terms of the given boundary values of the required functions. We employ the idea of approximating a given 2π-periodic boundary function by trigonometric polynomials, since it is easy to extend them to harmonic polynomials inside the disk so that the deviation from the required harmonic function does not exceed the error of approximation of the boundary function. The approximating trigonometric polynomials are constructed by means of an interpolation projection to subspaces of a multiresolution analysis (approximation) with basis 2π-periodic scaling functions (more exactly, their binary rational compressions and shifts). Such functions were constructed by the authors earlier on the basis of Meyer-type wavelets; they are either orthogonal and at the same time interpolating on uniform grids of the corresponding scale or only interpolating. The bounds on the rate of approximation of the solution to the boundary value problem are based on the property ofMeyer wavelets to preserve trigonometric polynomials of certain (large) orders; this property was used for other purposes in the first two papers listed in the references. Since a numerical bound of the approximation error is very important for the practical application of the method, a considerable portion of the paper is devoted to this issue, more exactly, to the explicit calculation of the constants in the order bounds of the error known earlier.  相似文献   

5.
It is well known that Gaussian cubature rules are related to multivariate orthogonal polynomials. The cubature rules found in the literature use common zeroes of some linearly independent set of products of basically univariate polynomials. We show how a new family of multivariate orthogonal polynomials, so-called spherical orthogonal polynomials, leads to symbolic-numeric Gaussian cubature rules in a very natural way. They can be used for the integration of multivariate functions that in addition may depend on a vector of parameters and they are exact for multivariate parameterized polynomials. Purely numeric Gaussian cubature rules for the exact integration of multivariate polynomials can also be obtained.We illustrate their use for the symbolic-numeric solution of the partial differential equations satisfied by the Appell function F2, which arises frequently in various physical and chemical applications. The advantage of a symbolic-numeric formula over a purely numeric one is that one obtains a continuous extension, in terms of the parameters, of the numeric solution. The number of symbolic-numeric nodes in our Gaussian cubature rules is minimal, namely m for the exact integration of a polynomial of homogeneous degree 2m−1.In Section 1 we describe how the symbolic-numeric rules are constructed, in any dimension and for any order. In Sections 2, 3 and 4 we explicit them on different domains and for different weight functions. An illustration of the new formulas is given in Section 5 and we show in Section 6 how numeric cubature rules can be derived for the exact integration of multivariate polynomials. From Section 7 it is clear that there is a connection between our symbolic-numeric cubature rules and numeric cubature formulae with a minimal (or small) number of nodes.  相似文献   

6.
We investigate Marcinkiewicz–Zygmund type inequalities for multivariate polynomials on various compact domains in \({\mathbb{R}^d}\). These inequalities provide a basic tool for the discretization of the L p norm and are widely used in the study of the convergence properties of Fourier series, interpolation processes and orthogonal expansions. Recently Marcinkiewicz–Zygmund type inequalities were verified for univariate polynomials for the general class of doubling weights, and for multivariate polynomials on the ball and sphere with doubling weights. The main goal of the present paper is to extend these considerations to more general multidimensional domains, which in particular include polytopes, cones, spherical sectors, toruses, etc. Our approach will rely on application of various polynomial inequalities, such as Bernstein–Markov, Schur and Videnskii type estimates, and also using symmetry and rotation in order to generate results on new domains.  相似文献   

7.
We show that the property of being a (weakly) admissible mesh for multivariate polynomials is preserved by small perturbations on real and complex Markov compacts. Applications are given to smooth transformations of polynomial meshes and to polynomial interpolation.  相似文献   

8.
We derive asymptotics for polynomials orthogonal over the complex unit disk with respect to a weight of the form 2|h(z)|, with h(z) a polynomial without zeros in |z|<1. The behavior of the polynomials is established at every point of the complex plane. The proofs are based on adapting to the unit disk a technique of J. Szabados for the asymptotic analysis of polynomials orthogonal over the unit circle with respect to the same type of weight.  相似文献   

9.
Scalar polynomials as approximations to more general scalar functions lead to the study of scalar polynomials represented in a variety of classical systems of polynomials, including orthogonal systems and Lagrange polynomials, for example. This article, motivated in part by analogy with the existing methods for linear factor polynomial deflation in the monomial basis, finds forward and backward deflation formulae for several such representations. It also finds the sensitivity factor of the deflation process for each representation.  相似文献   

10.
The H-basis concept allows, similarly to the Gröbner basis concept, a reformulation of nonlinear problems in terms of linear algebra. We exhibit parallels of the two concepts, show properties of H-bases, discuss their construction and uniqueness questions, and prove that n polynomials in n variables are, under mild conditions, already H-bases. We apply H-bases to the solution of polynomial systems by the eigenmethod and to multivariate interpolation.  相似文献   

11.
We consider two important families of BCn-symmetric polynomials, namely Okounkov's interpolation polynomials and Koornwinder's orthogonal polynomials. We give a family of difference equations satisfied by the former as well as generalizations of the branching rule and Pieri identity, leading to a number of multivariate q-analogues of classical hypergeometric transformations. For the latter, we give new proofs of Macdonald's conjectures, as well as new identities, including an inverse binomial formula and several branching rule and connection coefficient identities. We also derive families of ordinary symmetric functions that reduce to the interpolation and Koornwinder polynomials upon appropriate specialization. As an application, we consider a number of new integral conjectures associated to classical symmetric spaces.  相似文献   

12.
This article considers the extension of V.A. Markov's theorem for polynomial derivatives to polynomials with unit bound on the closed unit ball of any real normed linear space. We show that this extension is equivalent to an inequality for certain directional derivatives of polynomials in two variables that have unit bound on the Chebyshev nodes. We obtain a sharpening of the Markov inequality for polynomials whose values at specific points have absolute value less than one. We also obtain an interpolation formula for polynomials in two variables where the interpolation points are Chebyshev nodes.  相似文献   

13.
ABSTRACT

In this contribution, we explore the well-known connection between Hurwitz and orthogonal polynomials. Namely, given a Hurwitz polynomial, it is shown that it can be decomposed into two parts: a polynomial that is orthogonal with respect to some positive measure supported in the positive real axis and its corresponding second-kind polynomial. Conversely, given a sequence of orthogonal polynomials with respect to a positive measure supported in the positive real axis, a sequence of Hurwitz polynomials can be constructed. Based on that connection, we construct sequences of Hurwitz polynomials that satisfy a recurrence relation, in a similar way as the orthogonal polynomials do. Even more, we present a way to construct families of Hurwitz polynomials using two sequences of parameters and a recurrence relation that constitutes an analogue of Favard's theorem in the theory of orthogonal polynomials.  相似文献   

14.
The comrade matrix was introduced recently as the analogue of the companion matrix when a polynomial is expressed in terms of a basis set of orthogonal polynomials. It is now shown how previous results on determining the greatest common divisor of two or more polynomials can be extended to the case of generalized polynomials using the comrade form. Furthermore, a block comrade matrix is defined, and this is used to extend to the generalized case another previous result on the regular greatest common divisor of two polynomial matrices.  相似文献   

15.
Novel memory‐efficient Arnoldi algorithms for solving matrix polynomial eigenvalue problems are presented. More specifically, we consider the case of matrix polynomials expressed in the Chebyshev basis, which is often numerically more appropriate than the standard monomial basis for a larger degree d. The standard way of solving polynomial eigenvalue problems proceeds by linearization, which increases the problem size by a factor d. Consequently, the memory requirements of Krylov subspace methods applied to the linearization grow by this factor. In this paper, we develop two variants of the Arnoldi method that build the Krylov subspace basis implicitly, in a way that only vectors of length equal to the size of the original problem need to be stored. The proposed variants are generalizations of the so‐called quadratic Arnoldi method and two‐level orthogonal Arnoldi procedure methods, which have been developed for the monomial case. We also show how the typical ingredients of a full implementation of the Arnoldi method, including shift‐and‐invert and restarting, can be incorporated. Numerical experiments are presented for matrix polynomials up to degree 30 arising from the interpolation of nonlinear eigenvalue problems, which stem from boundary element discretizations of PDE eigenvalue problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Bivariate polynomials defined on the unit disk are used to reconstruct a wavefront from a data sample. We analyze the interpolation problem arising in critical sampling, that is, using a minimal sample. The interpolant is expressed as a linear combination of Zernike polynomials, whose coefficients represent relevant optical features of the wavefront. We study the propagation of errors of the polynomial values and their coefficients, obtaining bounds for the Lebesgue constants and condition numbers. A node distribution leading to low Lebesgue constants and condition numbers for degrees up to 20 is proposed.  相似文献   

17.
Invariant factors of bivariate orthogonal polynomials inherit most of the properties of univariate orthogonal polynomials and play an important role in the research of Stieltjes type theorems and location of common zeros of bivariate orthogonal polynomials. The aim of this paper is to extend our study of invariant factors from two variables to several variables. We obtain a multivariate Stieltjes type theorem, and the relationships among invariant factors, multivariate orthogonal polynomials and the corresponding Jacobi matrix. We also study the location of common zeros of multivariate orthogonal polynomials and provide some examples of tri-variate.  相似文献   

18.
We study symmetric polynomials whose variables are odd-numbered Jucys–Murphy elements. They define elements of the Hecke algebra associated to the Gelfand pair of the symmetric group with the hyperoctahedral group. We evaluate their expansions in zonal spherical functions and in double coset sums. These evaluations are related to integrals of polynomial functions over orthogonal groups. Furthermore, we give their extension based on Jack polynomials.  相似文献   

19.
We consider Lagrange interpolation polynomials for functions in the disk algebra with nodes on the boundary of the unit disk. In case that the closure of the set of nodes does not cover the boundary of the unit disk we prove that there exists a residual set of functions in the disk algebra, such that the Lagrange interpolation polynomials of each of these functions form a dense subset of the space of all holomorphic functions defined on the unit disk.  相似文献   

20.
We investigate the use of orthonormal polynomials over the unit disk ??2 in ?2 and the unit ball ??3 in ?3. An efficient evaluation of an orthonormal polynomial basis is given, and it is used in evaluating general polynomials over ??2 and ??3. The least squares approximation of a function f on the unit disk by polynomials of a given degree is investigated, including how to write a polynomial using the orthonormal basis. Matlab codes are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号