首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten low-lying conformers of beta-alanine have been studied by the hybrid density functional B3LYP/aug-cc-pVDZ method. Energetic extrapolation calculations at the MP3 and MP4(SDQ) levels of theory and the theoretical photoelectron spectra simulated with the electron propagation theory demonstrate that there are at least three gauche conformers (G1, G2, and G3) in gas-phase experiments. The calculated ionization potentials are in good agreement with the experimental data available in the literature. Natural bond orbital and atoms-in-molecules analyses exhibit a remarkable influence on the molecular electronic structures by the strong intramolecular hydrogen bonding O-H...N in the neutral conformer G2. Remarkable internal rotations of the COOH group are found in the cationic G1+ and G3+ with respect to the neutral conformers. A distonic [NH3+-(CH2)2-COO*] radical can be formed through the spontaneous intramolecular proton transfer in G2+. A novel intramolecular hydrogen bonding, C-H...O, is found in the anti A1+ cation.  相似文献   

2.
The molecular structure and relative stability of different conformers of isolated canonical 2'-deoxyribonucleotides thymidine-5'-phosphate (pdT), 2-deoxycytidine-5'-phosphate (pdC), 2-deoxyadenosine-5'-phosphate (pdA), and 2'-deoxyguanosine-5'-phosphate (pdG) were calculated using the B3LYP/6-31++G(d,p) level of theory. The results of the calculations reveal that, for all nucleotides except pdG, conformers with a syn orientation of the base do not correspond to a minimum on the potential energy surface. In the case of pdA and pdC, conformers with an orthogonal orientation of the nucleobase are located instead, north/syn conformers. These conformers as well as syn conformers of pdG are stabilized by intramolecular N-H...O hydrogen bonds. Analysis of the electron density distribution within the atoms in molecules theory reveals the presence of numerous C-H...O hydrogen bonds in the nucleotides. However, a more detailed consideration of the properties of these bonds demonstrates that many of them should be considered as strong attractive electrostatic interactions rather than true hydrogen bonds. True hydrogen bonds are represented mainly by C6/ C8-H...O5'/O-P in anti conformers and the N-H...O-P bonds in syn conformers. It is demonstrated that the values of ellipticity of the electron density at the bond critical point (BCP) and the distance between BCP and ring critical point are the most reliable indicators for determining the true intramolecular hydrogen bonds.  相似文献   

3.
The low-lying conformers of N-/O-methylglycine are studied by ab initio calculations at the B3LYP, MP3, and MP4(SDQ) levels of theory with the aug-cc-pVDZ basis set. The conformers having the intramolecular hydrogen bonds N-H...O=C or O-H...N are more stable than the others. Vertical ionization energies for the valence molecular orbitals of each conformer predicted with the electron propagator theory in the partial third-order quasiparticle approximation are in good agreement with the experimental data available in the literatures. The relative energies of the conformers and comparison between the simulated and the experimental photoelectron spectra demonstrate that there are at least three and two conformers of N- and O-methylglycine, respectively, in the gas-phase experiments. The intramolecular hydrogen bonding O-H...N effects on the molecular electronic structures are discussed for the glycine methyl derivatives, on the basis of the ab initio electronic structure calculations, natural orbital bond, and atoms-in-molecules analyses. The intramolecular hydrogen bonding O-H...N interactions hardly affect the electronic structures of the O-NH2-CH2-C(=O)-O-CH3 and alpha-methylated NH2-CH2-C(CH3)OOH conformers, while the similar intramolecular interactions lead to the significantly lower-energy levels of the highest occupied molecular orbitals for the N-(CH3-NH-CH2-COOH) and beta-methylated (NH2-CH2-CH2-COOH) conformers.  相似文献   

4.
Various folded molecular structures contain different amount of information. The relative amount of information may be related to relative entropy or entropy change. The conformational entropy change for n-butane has been computed as the function of rotation around the central C-C bond. It appears that the g+ or g- conformers contain about 16% more information than the anti-structure. Furthermore, the syn conformation with the two groups eclipsed contained about 42% more information than the fully staggered anti orientation. The conformational entropy function calculated from 3N - 7 internal degrees of freedom was found to be a continuous function.  相似文献   

5.
The binary complexes of water with styrene and fluorostyrene were investigated using LIF and FDIR spectroscopic techniques. The difference in the shifts of S 1 <-- S 0 electronic transitions clearly points out the disparity in the intermolecular structures of these two binary complexes. The FDIR spectra in the O-H stretching region indicate that water is a hydrogen bond donor in both complexes. The formation of a single O-H...pi hydrogen-bonded complex with styrene and an in-plane complex with fluorostyrene was inferred based on the analysis of the FDIR spectra in combination with ab initio calculations. The in-plane complex with fluorostyrene is characterized by the presence of O-H...F and C-H...O hydrogen bonds, leading to formation of a stable six-membered ring. The synergistic effect of O-H...F and C-H...O hydrogen bonds overwhelms the O-H...pi interaction in fluorostyrene-water complexes.  相似文献   

6.
The structural and spectral properties of (ortho and para) C8-aryl-purine adducts formed from carbon attachment by phenolic toxins were investigated through DFT calculations and UV-vis absorbance and emission studies. The global minima of both the deoxyadenosine (dA) and deoxyguanosine (dG) adducts adopted a syn conformation about the glycosidic bond due to the presence of an O5'-H...N3 hydrogen bond, where the anti minima are 20-30 kJ mol-1 higher in energy. While the nucleobase adducts are planar, the presence of the deoxyribose sugar induces a twist about the carbon-carbon bond connecting the phenol and nucleobase rings. ortho-Phenolic adducts are less twisted than the corresponding para adducts due to stabilization provided by an intramolecular O-H...N7 bond. Solvation calculations, in combination with UV-vis studies, demonstrate that the structural preference is solvent dependent, where solvents with hydrogen-bonding abilities disrupt the intramolecular O-H...N7 hydrogen bond such that a greater degree of twist is observed, and less polar solvents stabilize the planar structure. Indeed, the ratio of twisted to planar conformers is estimated to be as large as 50:50 in some aprotic solvents. Thus, the combined experimental and computational approach has provided a greater understanding of the structure of the ortho- and para-dA and dG C-bonded phenoxyl adducts as the first step to understanding the biological consequences of this form of DNA damage.  相似文献   

7.
X-ray crystal structures of pyrazinic acid 1 and isomeric methylpyrazine carboxylic acids 2-4 are analyzed to examine the occurrence of carboxylic acid-pyridine supramolecular synthon V in these heterocyclic acids. Synthon V, assembled by (carboxyl)O-H...N(pyridine) and (pyridine)C-H...O(carbonyl) hydrogen bonds, controls self-assembly in the crystal structures of pyridine and pyrazine monocarboxylic acids. The recurrence of acid-pyridine heterodimer V compared to the more common acid-acid homodimer I in the crystal structures of pyridine and pyrazine monocarboxylic acids is explained by energy computations in the RHF 6-31G* basis set. Both the O-H.N and the C-H...O hydrogen bonds in synthon V result from activated acidic donor and basic acceptor atoms in 1-4. Pyrazine 2,3- and 2,5-dicarboxylic acids 10 and 11 crystallize as dihydrates with a (carboxyl)O-H...O(water) hydrogen bond in synthon VII, a recurring pattern in the diacid structures. In summary, the carboxylic acid group forms an O-H...N hydrogen bond in pyrazine monocarboxylic acids and an O-H...O hydrogen bond in pyrazine dicarboxylic acids. This structural analysis correlates molecular features with supramolecular synthons in pyridine and pyrazine carboxylic acids for future crystal engineering strategies.  相似文献   

8.
Fluoroalcohols show competitive formation of intra‐ and intermolecular hydrogen bonds, a property that may be crucial for the protein‐altering process in a fluoroalcohol/water solution. In this study, we examine the intra‐ and intermolecular interactions of 2‐fluoroethanol (FE) in its dimeric conformers by using rotational spectroscopy and ab initio calculations. Three pairs of homo‐ and heterochiral dimeric FE conformers are predicted to be local minima at the MP2/6‐311++G(d,p) level of theory. They are solely made of the slightly distorted most stable G+g?/G?g+ FE monomer units. Jet‐cooled rotational spectra of four out of the six predicted dimeric conformers were observed and unambiguously assigned for the first time. All four observed dimeric conformers have compact geometries in which the fluoromethyl group of the acceptor tilts towards the donor and ensures a large contact area. Experimentally, the insertion of the O? H group of one FE subunit into the intramolecular O? H???F bond of the other was found to lead to a higher stabilisation than the pure association through an intermolecular O? H???O? H link. The hetero‐ and homochiral combinations were observed to be preferred in the inserted and the associated dimeric conformers, respectively. The experimental rotational constants and the stability ordering are compared with the ab initio calculations at the MP2 level with the 6‐311++G(d,p) and aug‐cc‐pVTZ basis sets. The effects of fluorination and the competing inter‐ and intramolecular hydrogen bonds on the stability of the dimeric FE conformers are discussed.  相似文献   

9.
The structures of benzoic acid (C6H5COOH) and 2-hydroxybenzoic acid (C6H4OHCOOH) have been determined in the gas phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d,p)) predict two conformers for benzoic acid, one which is 25.0 kJ mol(-1) (MP2) lower in energy than the other. In the low-energy form, the carboxyl group is coplanar with the phenyl ring and the O-H group eclipses the C=O bond. Theoretical calculations (HF and MP2/6-311+G(d,p)) carried out for 2-hydroxybenzoic acid gave evidence for seven stable conformers but one low-energy form (11.7 kJ mol(-1) lower in energy (MP2)) which again has the carboxyl group coplanar with the phenyl ring, the O-H of the carboxyl group eclipsing the C=O bond and the C=O of the carboxyl group oriented toward the O-H group of the phenyl ring. The effects of internal hydrogen bonding in 2-hydroxybenzoic acid can be clearly observed by comparison of pertinent structural parameters between the two compounds. These differences for 2-hydroxybenzoic acid include a shorter exocyclic C-C bond, a lengthening of the ring C-C bond between the substituents, and a shortening of the carboxylic single C-O bond.  相似文献   

10.
Laser-induced fluorescence (LIF), dispersed fluorescence (DF), mass-resolved one-color resonance enhanced two-photon ionization (RE2PI) and UV-UV hole-burning spectra of 2-aminoindan (2-AI) were measured in a supersonic jet. The hole-burning spectra demonstrated that the congested vibronic structures observed in the LIF excitation spectrum were responsible for three conformers of 2-AI. The origins of the conformers were observed at 36931, 36934, and 36955 cm(-1). The DF spectra obtained by exciting the band origins of the three conformers showed quite similar vibrational structures, with the exception of the bands around 600-900 cm(-1). The molecular structures of the three conformers were assigned with the aid of ab initio calculations at the MP2/6-311+G(d,p) level. An amino hydrogen of the most stable conformer points toward the benzene ring. The stability of the most stable conformer was attributed to an intramolecular N-H...pi hydrogen bonding between the hydrogen atom and the pi-electron of the benzene ring. The other two conformers, devoid of intramolecular hydrogen bonding, were also identified for 2-AI. This suggests weak hydrogen bonding in the most stable conformer. The intramolecular N-H...pi hydrogen bonding in 2-AI was discussed in comparison with other weak hydrogen-bonding systems.  相似文献   

11.
We addressed the mechanism of epoxidation of 2-cyclohexen-1-ol by locating all the transition structures (TSs) for the reaction of peroxyformic acid (PFA) with both pseudoequatorial and pseudoaxial cyclohexenol conformers (five TSs for each conformer) and, for purpose of comparison, also those for the PFA epoxidation of cyclohexene. Geometry optimizations were performed at the B3LYP/6-31G level, energies refined with single point B3LYP/6-311+G// B3LYP/6-31G calculations and solvent effects introduced with the CPCM method. Our results can be summarized as follows: (i) all TSs exhibit a spiro-like structure, that is, the dihedral angle between the peroxy acid plane and the forming oxirane plane is closer to 90 degrees than to 0 degrees (or 180 degrees ); (ii) there is a stabilizing hydrogen bonding interaction in syn TSs that, however, is partly counteracted by unfavorable entropic effects; (iii) syn,exo TSs with hydrogen bonding at the PFA peroxy oxygens are definitely more stable than syn,endo TSs hydrogen bonded at the PFA carbonyl oxygen; (iv) facial selectivity of epoxidation of both cyclohexenol conformers is mostly the result of competition between only two TSs, namely, an anti,exo TS and its syn,exo counterpart. The latter TS is more stable than the former one, as stabilization by hydrogen bonding overrides the unfavorable entropic and solvent effects; (v) calculations correctly predict both the experimental dominance of attack leading to syn epoxide for both cyclohexenol conformers and the higher syn selectivity observed for the pseudoequatorial as compared to the pseudoaxial derivative. Moreover, also the experimental relative and absolute epoxidation rates for cyclohexene and cyclohexenol as well as for pseudoaxial and pseudoequatorial cyclohexenol derivatives are fairly well reproduced by computational data.  相似文献   

12.
We investigate the structures, NMR chemical shifts, absorption spectra, frontier molecular orbitals, and transition density matrices of pi-stacked polyfluorenes by ab initio calculations. For F1-F4, we consider two different conformations, syn and anti. The simulated 1H NMR chemical shifts are in good agreement with the previous experiment, and the significantly upfielded chemical shifts explain that the fluorene moieties are stacked on each other. It is found that the relative stability for syn and anti conformers is almost equivalent in B3LYP calculations; however, the syn conformer becomes much more stable than the anti conformer in MP2 calculations, which is consistent with the experimental finding that only the syn conformers are relevant. The vertical detachment energy, which is linearly proportional to the ionization potential, shows the same size dependence as the previous experiment. The electron attachment energy decreases exponentially as the size increases, which implies that the electron transport would be possible even for long chains such as F3 and F4. This was evident from the frontier molecular orbitals (HOMO and LUMO). Also, it is found that the syn conformers are very favorable for electron transport through the pi-stacked fluorene moieties.  相似文献   

13.
The molecular structure and conformational properties of methoxycarbonylsulfenyl chloride, CH(3)OC(O)SCl, were determinated in the gas and solid phases by gas electron diffraction, low-temperature X-ray diffraction, and vibrational spectroscopy. Furthermore, quantum chemical calculations were performed. Experimental and theoretical methods result in structures with a planar C-O-C(O)-S-Cl skeleton. The electron diffraction intensities are reproduced best with a mixture of 72(8)% syn and 28(8)% anti conformers (S-Cl bond synperiplanar/antiperiplanar with respect to C=O bond) and the O-CH(3) bond synperiplanar with respect to the C=O bond. The syn form is the preferred form and becomes the exclusive form in the crystalline solid at low temperature. This experimental result is reproduced very well by Hartree-Fock approximation and by density functional theory at different levels of theory but not by the MP2/6-311G method, which overestimates the value of DeltaG between the syn and anti conformers. The results are discussed in terms of anomeric effects and a natural bond orbital (NBO) calculation. Photolysis of matrix-isolated CH(3)OC(O)SCl with broad-band UV-visible irradiation produces an interconversion of the conformers, and the concomitant decomposition leads to formation of OCS and CO molecules.  相似文献   

14.
A complete conformational analysis on the isolated and polarizable continuum model (PCM) modeled aqueous solution cation, quinonoidal, and anion forms of pelargonidin, comprising the diverse tautomers of the latter forms, was carried out at the B3LYP/6-31++G(d,p) level. The results indicate that the most stable conformer of cationic and quinonoidal forms of pelargonidin are completely planar in the gas phase, whereas that of the anionic form is not planar. In contrast, PCM calculations show that the plane of the B ring is slightly rotated with regard to the AC bicycle in the most stable conformer of the cation and quinonoidal form. The most stable conformers of the cation, both in gas phase and aqueous solution, display anti and syn orientations for, respectively, C2-C3-O-H and C6-C5-O-H dihedral angles, whereas syn and anti orientation of hydroxyls at 7 and 4' positions are nearly isoenergetic. The most stable tautomer of quinonoidal pelargonidin is obtained by deprotonating hydroxyl at C5 in gas phase but at C7 according to PCM. Also, the most stable tautomer of the anion is different in gas phase (hydrogens are abstracted from hydroxyls at C5 and C4') and PCM simulation (C3 and C5). Tautomeric equilibria affect substantially the geometries of the AC-B backbone providing bond length variations that basically agree with the predictions of the resonance model. Most of the conformers obtained display an intramolecular hydrogen bond between O3 and H6'. Nevertheless, this interaction is not present in the most stable anions. Ionization potentials and O-H bond dissociation energies computed for the most stable conformers of cation, quinonoidal, and anion forms are consistent with an important antioxidant activity.  相似文献   

15.
Microsolvated formamide clusters have been generated in a supersonic jet expansion and characterized using Fourier transform microwave spectroscopy. Three conformers of the monohydrated cluster and one of the dihydrated complex have been observed. Seven monosubstituted isotopic species have been measured for the most stable conformer of formamide...H(2)O, which adopts a closed planar ring structure stabilized by two intermolecular hydrogen bonds (N-H...O(H)-H...O=C). The two higher energy forms of formamide...H(2)O have been observed for the first time. The second most stable conformer is stabilized by a O-H...O=C and a weak C-H...O hydrogen bond, while, in the less stable form, water accepts a hydrogen bond from the anti hydrogen of the amino group. For formamide...(H(2)O)(2), the parent and nine monosubstituted isotopic species have been observed. In this cluster the two water molecules close a cycle with the amide group through three intermolecular hydrogen bonds (N-H...O(H)-H...O(H)-H...O=C), the nonbonded hydrogen atoms of water adopting an up-down configuration. Substitution (r(s)) and effective (r(0)) structures have been determined for formamide, the most stable form of formamide...H(2)O and formamide...(H(2)O)(2). The results on monohydrated formamide clusters can help to explain the observed preferences of bound water in proteins. Clear evidence of sigma-bond cooperativity effects emerges when comparing the structures of the mono- and dihydrated formamide clusters. No detectable structural changes due to pi-bond cooperativity are observed on formamide upon hydration.  相似文献   

16.
Ab initio conformers and dimers have been computed at RHF and B3LYP/6-31G* levels for isomers 2-chloro-3-hydroxybenzaldehyde and 3-chloro-4-hydroxybenzaldehyde to explain the observed infrared absorption and Raman vibrational spectral features in the region 3500-50 cm(-1). The position of the chlorine in ortho position with respect to aldehyde group in 2-chloro-3-hydroxybenzaldehyde yields four distinct conformers; whereas the chlorine in meta position in 3-chloro-4-hydroxybenzaldehyde yields effectively only three conformers. Major spectral features as strong absorptions near 3160-80 cm(-1), down-shifting of the aldehydic carbonyl stretching mode and up-shifting of hydroxyl group's in-plane bending mode are explained using ab initio evidence of O-H?O bond-aided dimerization between the most stable conformers of each molecule. Absorption width of about 700 cm(-1) (~8.28 kJ/mol) of O-H stretching modes suggests a strong hydrogen bonding with the ab initio bond lengths, O-H?O in the range of 2.873-2.832 ?. A strong Raman mode near 110-85 cm(-1) in each molecule is interpreted to be coupled vibrations of pseudo-dimeric trans and cis structures.  相似文献   

17.
We studied hydrogen bonding between formic acid (FA) and water in solid argon and identified the first water complex with the higher-energy conformer cis-FA. In sharp contrast to cis-FA monomer, cis-FA interacting with water is very stable at low temperatures, which was explained by strong O-H...O hydrogen bonding. These benchmark results show that hydrogen bonding can terminate proton tunneling reactions and efficiently stabilize intrinsically unstable conformational structures in complex asymmetrical hydrogen-bonded networks. This general effect occurs when the energy difference between conformers is smaller than the hydrogen bond interaction energy, which opens perspectives in chemistry on intrinsically unstable conformers.  相似文献   

18.
Seven different optimized conformers of α‐fluoroglycine (H2NCHFCOOH) were obtained from ab initio calculations. Some of these conformers are exceptionally stable compared to similar conformers of glycine. Conformers in which the lone pair of electrons on the nitrogen atom are antiperiplanar to the C F bond are more stable than conformers that do not have such an arrangement. The stability difference between conformers with such an arrangement and conformers that have the lone pair of electrons synperiplanar to the C F bond is about 27 kJ/mol (calculated at the MP2/6‐31+G* level). Conformers that have the lone pair of electrons antiperiplanar to the C F bond possess a longer C F bond, a shorter C N bond, and sp2‐like amino bond angles. For some conformers an unusual hydrogen bond involving the acidic carboxylic acid hydrogen and the electronegative fluorine atom is observed. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 426–431, 2000  相似文献   

19.
Very short C-H...O, N-H...O, and O-H...O hydrogen bonds have been generated utilizing the cyclic phosphate [CH2(6-t-Bu-4-Me-C6H2O)2]P(O)OH (1). X-ray structures of (i) 1 (unsolvated, two polymorphs), 1...EtOH, and 1...MeOH, (ii) [imidazolium](+)[CH2(6-t-Bu-4-Me-C6H2O)2PO2](-)...MeOH [2], (iii) [HNC5H4-N=N-C5H4NH](2+)[(CH2(6-t-Bu-4-Me-C6H2O)2PO2)2](2-)...4CH3CN...H2O [3], (v) [K, 18-crown-6](+)[(CH2(6-t-Bu-4-Me-C6H2O)2P(O)OH)(CH2(6-t-Bu-4-Me-C6H2O)2PO2)](-)...2THF [4], (vi) 1...cytosine...MeOH [5], (vii) 1...adenine...1/2MeOH [6], and (viii) 1...S-(-)-proline [7] have been determined. The phosphate 1 in both its forms is a hydrogen-bonded dimer with a short O-H...O distance of 2.481(2) [triclinic form] or 2.507(3) A [monoclinic form]. Compound 2 has a helical structure with a very short C-H...O hydrogen bond involving an imidazolyl C-H and methanol in addition to N-H...O hydrogen bonds. A helical motif is also seen in 5. In 3, an extremely short N-H...O hydrogen bond [N...O 2.558(4) A] is observed. Compounds 6 and 7 also exhibit short N-H...O hydrogen bonds. In 1...EtOH, a 12-membered hydrogen-bonded ring motif, with one of the shortest known O-H...O hydrogen bonds [O...O 2.368(4) A], is present. 1...MeOH is a similar dimer with a very short O(-H)...O bond [2.429(3) A]. In 4, the deprotonated phosphate (anion) and the parent acid are held together by a hydrogen bond on one side and a coordinate/covalent bond to potassium on the other; the O-H...O bond is symmetrical and very strong [O...O 2.397(3) A].  相似文献   

20.
Secondary squaramides have considerable potential as hydrogen bond donors and acceptors. In CHCl(3) both, anti- and syn-squaramide rotamers are observed by NMR. The energetic barrier for anti/syn mutual interconversion determined by complete band shape analysis is approximately 63 kJ mol(-1). As in proline derivatives, a low rotational barrier is crucial for the design of foldable modules. In this paper, folding based on the low rotational barrier of squaramides is driven by donor atoms (N or O) located in the gamma position of an alkyl chain of a secondary squaramide. We demonstrate that the resulting minimal module exists as a folded conformer through the formation of a nine-membered ring stabilized by intramolecular hydrogen bonding. Molecular mechanics calculations and NMR studies support the existence of these folded conformers. The intramolecularly hydrogen bonded conformers are clearly visible even in CHCl(3)-EtOH mixtures. Folding occurs even in pure ethanol. As an indirect test, we studied the effectiveness of macrocyclization reactions in pure ethanol that require an effective templating effect to take place. The high yields obtained support the dominant role of a folded conformer even in this solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号