首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-temperature ozonation (-78 degrees C) of 2-methyl-1,3-dioxolane (1a) in acetone-d6, methyl acetate, and tert-butyl methyl ether produced both the corresponding acetal hydrotrioxide (3a, ROOOH) and the hemiortho ester (2a, ROH) in molar ratio 1:5. Both intermediates were fully characterized by 1H, 13C, and 17O NMR spectroscopy, and they both decomposed to the corresponding hydroxy ester at higher temperatures. The mechanism involving the HOOO- anion formed by the abstraction of the hydride ion by ozone to form an ion pair, R+ -OOOH, with its subsequent collapse to either the corresponding hemiortho ester (ROH) or the acetal hydrotrioxide (ROOOH) was proposed. This mechanism is supported by the PISA/B3LYP/6-311++G(3df,3pd) calculations.  相似文献   

2.
Dihydrogen trioxide (HOOOH) is formed nearly quantitatively in the low-temperature (-70 degrees C) methyltrioxorhenium(VII) (MTO)-catalyzed transformation of silyl hydrotrioxides (R3SiOOOH), and some acetal hydrotrioxides, in various solvents, as confirmed by 1H, and 17O NMR spectroscopy. The calculated energetics (B3LYP) for the catalytic cycle, using H3SiOOOH as a model system, is consistent with the experimentally observed activation energy (9.5 +/- 2.0 kcal/mol) and a small kinetic solvent isotope effect (kH2O/kD2O = 1.1 +/- 0.1), indicating an initial concerted reaction between the silyl hydrotrioxide and MTO in the rate-determining step. With the addition of water in the next step, the intermediate undergoes a sigma-bond metathesis reaction to break the Re-OOOH bond and form HOOOH, together with the second dihydroxy intermediate. The final step in the catalytic cycle involves a second, catalytic water that lowers the barrier to form H3SiOH and MTO.  相似文献   

3.
Low-temperature ozonation of cumene (1a) in acetone, methyl acetate, and tert-butyl methyl ether at -70 degrees C produced the corresponding hydrotrioxide, C(6)H(5)C(CH(3))(2)OOOH (2a), along with hydrogen trioxide, HOOOH. Ozonation of triphenylmethane (1b), however, produced only triphenylmethyl hydrotrioxide, (C(6)H(5))(3)COOOH (2b). These observations, together with the previously reported experimental evidence, seem to support the "radical" mechanism for the first step of the ozonation of the C-H bonds in hydrocarbons, i.e., the formation of the caged radical pair (R(**)OOOH), which allows both (a) collapse of the radical pair to ROOOH and (b) the abstraction of the hydrogen atom from alkyl radical R(*) by HOOO(*) to form HOOOH. The B3LYP/6-311++G(d,p) (ZPE) calculations revealed that HOOO radicals are considerably stabilized by forming intermolecularly hydrogen-bonded complexes with acetone (BE = 8.55 kcal/mol) and dimethyl ether (7.04 kcal/mol). This type of interaction appears to be crucial for the relatively fast reactions (and the formation of the polyoxides in relatively high yields) in these solvents, as compared to the ozonations run in nonbasic solvents. However, HOOO radicals appear to be not stable enough to abstract hydrogen atoms outside the solvent cage, as indicated by the absence of HOOOH among the products in the ozonolysis of triphenylmethane. The decomposition of alkyl hydrotrioxides 2a and 2b involves a homolytic cleavage of the RO-OOH bond with subsequent "in cage" reactions of the corresponding radicals, while the decomposition of HOOOH is most likely predominantly a "pericyclic" process involving one or more molecules of water acting as a bifunctional catalyst to produce water and singlet oxygen (Delta(1)O(2)).  相似文献   

4.
Low-temperature ozonation of isopropyl alcohol (1a) and isopropyl methyl ether (1b) in [D6]acetone, methyl acetate, and tert-butyl methyl ether at -78 degrees C produced the corresponding hydrotrioxides, Me2C(OH)(OOOH) (2a) and Me2C(OMe)(OOOH) (2b), along with hydrogen trioxide (HOOOH). All the polyoxides investigated were characterized for the first time by 17O NMR spectroscopy of highly 17O-enriched species. The assignment was confirmed by GIAO/MP2/6-31++G* calculations of 17O NMR chemical shifts, which were in excellent agreement with the experimental values. Ab initio density functional (DFT) calculations at the B3LYP/ 6-31G*+ZPE level have clarified the transition structure (TS1, deltaE = 7.4 and 10.6 kcalmol(-1), relative to isolated reactants and the complex 1a-ozone, respectively) for the ozonation of 1a: this, together with the formation of HOOOH and some other products, indicates the involvement of radical intermediates (R*, *OOOH) in the reaction. The activation parameters for the decomposition of the hydrotrioxides 2a and 2b (Ea, = 23.5+/-1.5 kcalmol(-1), logA = 16+/-1.8) were typical for a homolytic process in which cleavage of the ROOOH molecule occurs to yield a radical pair [RO* *OOH] and represents the lowest available energy pathway. Significantly the lower activation parameters for the decomposition of HOOOH (Ea = 16.5+/-2.2 kcalmol(-1), logA = 9.5+/-2.0) relative to those expected for the homolytic scission of the HO-OOH bond [bond dissociation energy (BDE) = 29.8 kcalmol(-1), CCSD(T)/6-311++G**] are in accord with the proposal that water behaves as a bifunctional catalyst and therefore participates in a "polar" (non-radical) decomposition process of this polyoxide. A relatively large acceleration of the decomposition of the hydrotrioxide 2a in [D6]acetone, accompanied by a significant lowering of the activation energies, was observed in the presence of a large excess of water. Thus intramolecular 1,3-proton transfer probably also involves the participation of water and is similar to the mechanism proposed for the decomposition of HOOOH. This hypothesis was further substantiated by the B3LYP/6-31++ G*+ZPE calculations for the participation of water in the decomposition of CH3OOOH, which revealed two stationary points on the potential energy surface corresponding to a CH3OOOH-HOH complex and a six-membered cyclic transition state TS2. The energy barriers were comparable with those calculated for HOOOH, that is, deltaE = 15.0 and 21.5 kcalmol(-1) relative to isolated reactants and the CH3OOOH-HOH complex, respectively.  相似文献   

5.
Hydrogen-bonded gas-phase molecular clusters of dihydrogen trioxide (HOOOH) have been investigated using DFT (B3LYP/6-311++G(3df,3pd)) and MP2/6-311++G(3df,3pd) methods. The binding energies, vibrational frequencies, and dipole moments for the various dimer, trimer, and tetramer structures, in which HOOOH acts as a proton donor as well as an acceptor, are reported. The stronger binding interaction in the HOOOH dimer, as compared to that in the analogous cyclic structure of the HOOH dimer, indicates that dihydrogen trioxide is a stronger acid than hydrogen peroxide. A new decomposition pathway for HOOOH was explored. Decomposition occurs via an eight-membered ring transition state for the intermolecular (slightly asynchronous) transfer of two protons between the HOOOH molecules, which form a cyclic dimer, to produce water and singlet oxygen (Delta (1)O 2). This autocatalytic decomposition appears to explain a relatively fast decomposition (Delta H a(298K) = 19.9 kcal/mol, B3LYP/6-311+G(d,p)) of HOOOH in nonpolar (inert) solvents, which might even compete with the water-assisted decomposition of this simplest of polyoxides (Delta H a(298K) = 18.8 kcal/mol for (H 2O) 2-assisted decomposition) in more polar solvents. The formation of relatively strongly hydrogen-bonded complexes between HOOOH and organic oxygen bases, HOOOH-B (B = acetone and dimethyl ether), strongly retards the decomposition in these bases as solvents, most likely by preventing such a proton transfer.  相似文献   

6.
Ozonation of norcarane (1) yielded endo and exo norcarane hydrotrioxides (2a, 2b), as characterized by (1)H and (13)C NMR spectroscopy. Further ozonation of the primary decomposition products of these hydrotrioxides, i.e., 2-norcaranols (3), produced the corresponding isomeric 2-norcaranol hydrotrioxides (4a, 4b), and hydrogen trioxide (HOOOH).  相似文献   

7.
Ozonation of various silanes and germanes produced the corresponding hydrotrioxides, R3SiOOOH and R3GeOOOH, which were characterized by 1H, 13C, 17O, and 29Si NMR, and by infrared spectroscopy in a two-pronged approach based on measured and calculated data. Ozone reacts with the E-H (E = Si, Ge) bond via a concerted 1,3-dipolar insertion mechanism, where, depending on the substituents and the environment (e.g., acetone-d6 solution), the H atom transfer precedes more and more E-O bond formation. The hydrotrioxides decompose in various solvents into the corresponding silanols/germanols, disiloxanes/digermoxanes, singlet oxygen (O2(1delta(g))), and dihydrogen trioxide (HOOOH), where catalytic amounts of water play an important role as is indicated by quantum chemical calculations. The formation of HOOOH as a decomposition product of organometallic hydrotrioxides in acetone-d6 represents a new and convenient method for the preparation of this simple, biochemically important polyoxide. By solvent variation, singlet oxygen (O2(1delta(g))) can be generated in high yield.  相似文献   

8.
The HOOO(-) anion (1) can adopt a triplet state (T-1) or a singlet state (S-1), where the former is 9.8 kcal/mol (DeltaH(298) = 10.3 kcal/mol) more stable than the latter. S-1 possesses a strong O-OOH bond with some double bond character and a weakly covalent OO-OH bond (1.80 A) according to CCSD(T)/6-311++G(3df,3pd) calculations (the longest O-O bond ever found for a peroxide). In aqueous solution, S-1 adopts a geometry closely related to that of HOOOH (OO(O), 1.388 A; (O)OO(H), 1.509 A; tau(OOOH), 78.3 degrees ), justifying that S-1 is considered the anion of HOOOH. Dissociation into HO anion and O(2)((1)Delta(g)) requires 15.4 (DeltaH(298) = 14.3; DeltaG(298) = 8.9) kcal/mol. Structure T-1 corresponds to a van der Waals complex between HO anion and O(2)((3)Sigma(g)(-)) having a binding energy of 2.7 (DeltaH(298) = 2.1) kcal/mol. Modes of generating S-1 in aqueous solution are discussed, and it is shown that S-1 represents an important intermediate in ozonation reactions.  相似文献   

9.
Various new thermally air- and water-stable alkyl and aryl analogues of (acac-O,O)2Ir(R)(L), R-Ir-L (acac-O,O = kappa2-O,O-acetylacetonate, -Ir- is the trans-(acac-O,O)2Ir(III) motif, R = CH3, C2H5, Ph, PhCH2CH2, L = Py) have been synthesized using the dinuclear complex [Ir(mu-acac-O,O,C3)-(acac-O,O)(acac-C3)]2, [acac-C-Ir]2, or acac-C-Ir-H2O. The dinuclear Ir (III) complexes, [Ir(mu-acac-O,O,C3)-(acac-O,O)(R)]2 (R = alkyl), show fluxional behavior with a five-coordinate, 16 electron complex by a dissociative pathway. The pyridine adducts, R-Ir-Py, undergo degenerate Py exchange via a dissociative mechanism with activation parameters for Ph-Ir-Py (deltaH++ = 22.8 +/- 0.5 kcal/mol; deltaS++ = 8.4 +/- 1.6 eu; deltaG++298 K) = 20.3 +/- 1.0 kcal/mol) and CH3-Ir-Py (deltaH++ = 19.9 +/- 1.4 kcal/mol; deltaS++ = 4.4 +/- 5.5 eu; deltaG++298 K) = 18.6 +/- 0.5 kcal/mol). The trans complex, Ph-Ir-Py, undergoes quantitatively trans-cis isomerization to generate cis-Ph-Ir-Py on heating. All the R-Ir-Py complexes undergo quantitative, intermolecular CH activation reactions with benzene to generate Ph-Ir-Py and RH. The activation parameters (deltaS++ =11.5 +/- 3.0 eu; deltaH++ = 41.1 +/- 1.1 kcal/mol; deltaG++298 K = 37.7 +/- 1.0 kcal/mol) for CH activation were obtained using CH3-Ir-Py as starting material at a constant ratio of [Py]/[C6D6] = 0.045. Overall the CH activation reaction with R-Ir-Py has been shown to proceed via four key steps: (A) pre-equilibrium loss of pyridine that generates a trans-five-coordinate, square pyramidal intermediate; (B) unimolecular, isomerization of the trans-five-coordinate to generate a cis-five-coordinate intermediate, cis-R-Ir- square; (C) rate-determining coordination of this species to benzene to generate a discrete benzene complex, cis-R-Ir-PhH; and (D) rapid C-H cleavage. Kinetic isotope effects on the CH activation with mixtures of C6H6/C6D6 (KIE = 1) and with 1,3,5-C6H3D3 (KIE approximately 3.2 at 110 degrees C) are consistent with this reaction mechanism.  相似文献   

10.
Low-temperature (-78 degrees C) ozonation of 1,2-diphenylhydrazine in various oxygen bases as solvents (acetone-d(6), methyl acetate, tert-butyl methyl ether) produced hydrogen trioxide (HOOOH), 1,2-diphenyldiazene, 1,2-diphenyldiazene-N-oxide, and hydrogen peroxide. Ozonation of 1,2-dimethylhydrazine produced besides HOOOH, 1,2-dimethyldiazene, 1,2-dimethyldiazene-N-oxide and hydrogen peroxide, also formic acid and nitromethane. Kinetic and activation parameters for the decomposition of the HOOOH produced in this way, and identified by (1)H, (2)H, and (17)O NMR spectroscopy, are in agreement with our previous proposal that water participates in this reaction as a bifunctional catalyst in a polar decomposition process to produce water and singlet oxygen (O(2), (1)delta(g)). The possibility that hydrogen peroxide is, besides water, also involved in the decomposition of hydrogen trioxide is also considered. The half-life of HOOOH at room temperature (20 degrees C) is 16 +/- 1 min in all solvents investigated. Using a variety of DFT methods (restricted, broken-symmetry unrestricted, self-interaction corrected) in connection with the B3LYP functional, a stepwise mechanism involving the hydrotrioxyl (HOOO(*)) radical is proposed for the ozonation of hydrazines (RNHNHR, R = H, Ph, Me) that involves the abstraction of the N-hydrogen atom by ozone to form a radical pair, RNNHR(*) (*)OOOH. The hydrotrioxyl radical can then either abstract the remaining N(H) hydrogen atom from the RNNHR(*) radical to form the corresponding diazene (RN=NR), or recombines with RNNHR(*) in a solvent cage to form the hydrotrioxide, RN(OOOH)NHR. The decomposition of these very labile hydrotrioxides involves the homolytic scission of the RO-OOH bond with subsequent "in cage" formation of the diazene-N-oxide and hydrogen peroxide. Although 1,2-diphenyldiazene is unreactive toward ozone under conditions investigated, 1,2-dimethyldiazene reacts with relative ease to yield 1,2-dimethyldiazene-N-oxide and singlet oxygen (O(2), (1)delta(g)). The subsequent reaction sequence between these two components to yield nitromethane as the final product is discussed. The formation of formic acid and nitromethane in the ozonolysis of 1,2-dimethylhydrazine is explained as being due to the abstraction of a methyl H atom of the CH(3)NNHCH(3)(*) radical by HOOO(*) in the solvent cage. The possible mechanism of the reaction of the initially formed formaldehyde methylhydrazone (and HOOOH) with ozone/oxygen mixtures to produce formic acid and nitromethane is also discussed.  相似文献   

11.
The cis/trans conformational equilibrium of N-methyl formamide (NMF) and the sterically hindered tert-butylformamide (TBF) was investigated by the use of variable temperature gradient 1H NMR in aqueous solution and in the low dielectric constant and solvation ability solvent CDCl3 and various levels of first principles calculations. The trans isomer of NMF in aqueous solution is enthalpically favored relative to the cis (deltaH(o) = -5.79 +/- 0.18 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = -0.23 +/- 0.17 kJ mol(-1)) playing a minor role. The experimental value of the enthalpy difference strongly decreases (deltaH(o) = -1.72 +/- 0.06 kJ mol(-1)), and the contribution of entropy at 298 K (298 x deltaS(o) = -1.87 +/- 0.06 kJ mol(-1)) increases in the case of the sterically hindered tert-butylformamide. The trans isomer of NMF in CDCl3 solution is enthalpically favored relative to the cis (deltaH(o) = -3.71 +/- 0.17 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = 1.02 +/- 0.19 kJ mol(-1)) playing a minor role. In the sterically hindered tert-butylformamide, the trans isomer is enthalpically disfavored (deltaH(o) = 1.60 +/- 0.09 kJ mol(-1)) but is entropically favored (298 x deltaS(o) = 1.71 +/- 0.10 kJ mol(-1)). The results are compared with literature data of model peptides. It is concluded that, in amide bonds at 298 K and in the absence of strongly stabilizing sequence-specific inter-residue interactions involving side chains, the free energy difference of the cis/trans isomers and both the enthalpy and entropy contributions are strongly dependent on the N-alkyl substitution and the solvent. The significant decreasing enthalpic benefit of the trans isomer in CDCl3 compared to that in H2O, in the case of NMF and TBF, is partially offset by an adverse entropy contribution. This is in agreement with the general phenomenon of enthalpy versus entropy compensation. B3LY/6-311++G** and MP2/6-311++G** quantum chemical calculations confirm the stability orders of isomers and the deltaG decrease in going from water to CHCl3 as solvent. However, the absolute calculated values, especially for TBF, deviate significantly from the experimental values. Consideration of the solvent effects via the PCM approach on NMF x H2O and TBF x H2O supermolecules improves the agreement with the experimental results for TBF isomers, but not for NMF.  相似文献   

12.
Benzocyclobutadienyl diazirine (2) was synthesized and reacted with hydroxide ion in a Fourier transform mass spectrometer to afford the conjugate base of benzocyclobutadiene (1a). Authentication of the ion structure was carried out by a derivatization experiment (i.e., la was converted to benzocyclobutenone enolate, which has previously been studied), and its reactivity was explored. Thermochemical data for benzocyclobutadiene (1) were obtained (deltaH(o)acid (1) = 386 +/- 3 kcal mol(-1), EA(1r) = 1.8 +/- 0.1 eV, and C-H BDE (1) = 114 +/- 4 kcal mol(-1)), compared to MP2 and B3LYP calculations, and contrasted to a series of model compounds. Cyclobutadienyl radical appears to be quite different from benzocyclobutadienyl radical (1r) and worth further exploration.  相似文献   

13.
The oxorhenium(V) dimer {MeReO(edt)}2 (1; where edt = 1,2-ethanedithiolate) catalyzes S atom transfer from thiiranes to triarylphosphines and triarylarsines. Despite the fact that phosphines are more nucleophilic than arsines, phosphines are less effective because they rapidly convert the dimer catalyst to the much less reactive catalyst [MeReO(edt)(PAr3)] (2). With AsAr3, which does not yield the monomer, the rate law is given by v = k[thiirane][1], independent of the arsine concentration. The values of k at 25.0 degrees C in CDCl3 are 5.58 +/- 0.08 L mol(-1) s(-1) for cyclohexene sulfide and ca. 2 L mol(-1) s(-1) for propylene sulfide. The activation parameters for cyclohexene sulfide are deltaH(double dagger) = 10.0 +/- 0.9 kcal mol(-1) and deltaS(double dagger) = -21 +/- 3 cal K(-1) mol(-1). Arsine enters the catalytic cycle after the rate-controlling release of alkene, undergoing a reaction with the Re(VII)(O)(S) intermediate that is so rapid in comparison that it cannot be studied directly. The use of a kinetic competition method provided relative rate constants and a Hammett reaction constant, rho = -1.0. Computations showed that there is little thermodynamic selectivity for arsine attack at O or S of the intermediate. There is, however, a large kinetic selectivity in favor of Ar3AsS formation: the calculated values of deltaH(double dagger) for attack of AsAr3 at Re=O vs Re=S in Re(VII)(O)(S) are 23.2 and 1.1 kcal mol(-1), respectively.  相似文献   

14.
Gas phase thermal decomposition of CF(3)OC(O)OOC(O)F and CF(3)OC(O)OOCF(3) was studied at temperatures between 64 and 98 degrees C (CF(3)OC(O)OOC(O)F) and 130-165 degrees C (CF(3)OC(O)OOCF(3)) using FTIR spectroscopy to follow the course of the reaction. For both substances, the decompositions were studied with N(2) and CO as bath gases. The rate constants for the decomposition of CF(3)OC(O)OOC(O)F in nitrogen and carbon monoxide fit the Arrhenius equations k(N)2 = (3.1 +/- 0.1) x 10(15) exp[-(29.0 +/- 0.5 kcal mol(-1)/RT)] and k(CO) = (5.8 +/- 1.3) x 10(15) exp[-(29.4 +/- 0.5 kcal mol(-1)/RT)], and that for CF(3)OC(O)OOCF(3) fits the equation k = (9.0 +/- 0.9) x 10(13) exp[-(34.0 +/- 0.7 kcal mol(-1)/RT)] (all in units of inverted seconds). Rupture of the O-O bond was shown to be the rate-determining step for both peroxides, and bond energies of 29 +/- 1 and 34.0 +/- 0.7 kcal mol(-1) were obtained for CF(3)OC(O)OOC(O)F and CF(3)OC(O)OOCF(3). The heat of formation of the CF(3)OCO(2)(*) radical, which is a common product formed in both decompositions, was calculated by ab initio methods as -229 +/- 4 kcal mol(-1). With this value, the heat of formation of the title species and of CF(3)OC(O)OOC(O)OCF(3) could in turn be obtained as Delta(f) degrees (CF(3)OC(O)OOC(O)F) = -286 +/- 6 kcal mol(-1), Delta(f) degrees (CF(3)OC(O)OOCF(3)) = -341 +/- 6 kcal mol(-1), and Delta(f) degrees (CF(3)OC(O)OOC(O)OCF(3)) = -430 +/- 6 kcal mol(-1).  相似文献   

15.
Aqueous solutions of rhodium(III) tetra p-sulfonatophenyl porphyrin ((TSPP)Rh(III)) complexes react with dihydrogen to produce equilibrium distributions between six rhodium species including rhodium hydride, rhodium(I), and rhodium(II) dimer complexes. Equilibrium thermodynamic studies (298 K) for this system establish the quantitative relationships that define the distribution of species in aqueous solution as a function of the dihydrogen and hydrogen ion concentrations through direct measurement of five equilibrium constants along with dissociation energies of D(2)O and dihydrogen in water. The hydride complex ([(TSPP)Rh-D(D(2)O)](-4)) is a weak acid (K(a)(298 K) = (8.0 +/- 0.5) x 10(-8)). Equilibrium constants and free energy changes for a series of reactions that could not be directly determined including homolysis reactions of the Rh(II)-Rh(II) dimer with water (D(2)O) and dihydrogen (D(2)) are derived from the directly measured equilibria. The rhodium hydride (Rh-D)(aq) and rhodium hydroxide (Rh-OD)(aq) bond dissociation free energies for [(TSPP)Rh-D(D(2)O)](-4) and [(TSPP)Rh-OD(D(2)O)](-4) in water are nearly equal (Rh-D = 60 +/- 3 kcal mol(-1), Rh-OD = 62 +/- 3 kcal mol(-1)). Free energy changes in aqueous media are reported for reactions that substitute hydroxide (OD(-)) (-11.9 +/- 0.1 kcal mol(-1)), hydride (D(-)) (-54.9 kcal mol(-1)), and (TSPP)Rh(I): (-7.3 +/- 0.1 kcal mol(-1)) for a water in [(TSPP)Rh(III)(D(2)O)(2)](-3) and for the rhodium hydride [(TSPP)Rh-D(D(2)O)](-4) to dissociate to produce a proton (9.7 +/- 0.1 kcal mol(-1)), a hydrogen atom (approximately 60 +/- 3 kcal mol(-1)), and a hydride (D(-)) (54.9 kcal mol(-1)) in water.  相似文献   

16.
The complete basis set method CBS-QB3 has been used to study the thermochemistry and kinetics of the esters ethyl propanoate (EP) and methyl butanoate (MB) to evaluate initiation reactions and intermediate products from unimolecular decomposition reactions. Using isodesmic and isogeitonic equations and atomization energies, we have estimated chemically accurate enthalpies of formation and bond dissociation energies for the esters and species derived from them. In addition it is shown that controversial literature values may be resolved by adopting, for the acetate radical, CH3C(O)O(.-), DeltaH(o)(f)298.15K) = -197.8 kJ mol(-1) and for the trans-hydrocarboxyl radical, C(.-)(O)OH, -181.6 +/- 2.9 kJ mol(-1). For EP, the lowest energy decomposition path encounters an energy barrier of approximately 210 kJ mol(-1) (approximately 50 kcal mol(-1)), which proceeds through a six-membered ring transition state (retro-ene reaction) via transfer of the primary methyl H atom from the ethyl group to the carbonyl oxygen, while cleaving the carbon-ether oxygen to form ethene and propanoic acid. On the other hand, the lowest energy path for MB has a barrier of approximately 285 kJ mol(-1), producing ethene. Other routes leading to the formation of aldehydes, alcohols, ketene, and propene are also discussed. Most of these intramolecular hydrogen transfers have energy barriers lower than that needed for homolytic bond fission (the lowest of which is 353 kJ mol(-1) for the C(alpha)-C(beta) bond in MB). Propene formation is a much higher energy demanding process, 402 kJ mol(-1), and it should be competitive with some C-C, C-O, and C-H bond cleavage processes.  相似文献   

17.
Through the use of the Active Thermochemical Tables approach, the best currently available enthalpy of formation of HO2 has been obtained as delta(f)H(o)298 (HO2) = 2.94 +/- 0.06 kcal mol(-1) (3.64 +/- 0.06 kcal mol(-1) at 0 K). The related enthalpy of formation of the positive ion, HO2+, within the stationary electron convention is delta(f)H(o)298 (HO2+) = 264.71 +/- 0.14 kcal mol(-1) (265.41 +/- 0.14 kcal mol(-1) at 0 K), while that for the negative ion, HO2- (within the same convention), is delta(f)H(o)298 (HO2-) = -21.86 +/- 0.11 kcal mol(-1) (-21.22 +/- 0.11 kcal mol(-1) at 0 K). The related proton affinity of molecular oxygen is PA298(O2) = 100.98 +/- 0.14 kcal mol(-1) (99.81 +/- 0.14 kcal mol(-1) at 0 K), while the gas-phase acidity of H2O2 is delta(acid)G(o)298 (H2O2) = 369.08 +/- 0.11 kcal mol(-1), with the corresponding enthalpy of deprotonation of H2O2 of delta(acid)H(o)298 (H2O2) = 376.27 +/- 0.11 kcal mol(-1) (375.02 +/- 0.11 kcal mol(-1) at 0 K). In addition, a further improved enthalpy of formation of OH is briefly outlined, delta(f)H(o)298 (OH) = 8.93 +/- 0.03 kcal mol(-1) (8.87 +/- 0.03 kcal mol(-1) at 0 K), together with new and more accurate enthalpies of formation of NO, delta(f)H(o)298 (NO) = 21.76 +/- 0.02 kcal mol(-1) (21.64 +/- 0.02 kcal mol(-1) at 0 K) and NO2, delta(f)H(o)298 (NO2) = 8.12 +/- 0.02 kcal mol(-1) (8.79 +/- 0.02 kcal mol(-1) at 0 K), as well as H(2)O(2) in the gas phase, delta(f)H(o)298 (H2O2) = -32.45 +/- 0.04 kcal mol(-1) (-31.01 +/- 0.04 kcal mol(-1) at 0 K). The new thermochemistry of HO2, together with other arguments given in the present work, suggests that the previous equilibrium constant for NO + HO2 --> OH + NO2 was underestimated by a factor of approximately 2, implicating that the OH + NO2 rate was overestimated by the same factor. This point is experimentally explored in the companion paper of Srinivasan et al. (next paper in this issue).  相似文献   

18.
Photolysis of p-tolyldiazirine (6) in the inner phase of a hemicarcerand with four butane-1,4-dioxy linker groups (5) in C(6)D(5)CD(3) at 77 K yields the 5-methylcycloheptatetraene hemicarceplex 5 circle 3b in 41% together with innermolecular reaction products resulting from an insertion of transient p-tolylcarbene (1b) into an acetal C-H or linker C-O bond of 5 and from the addition of 1b to an aryl unit of 5. The yield of incarcerated 3b increased up to 67% if 6 is photolyzed inside a hemicarcerand with deuterated spanners and butane-1,4-dioxy linker groups (d(48)-5). Hemicarceplex 5 circle 3b is not formed if the photolysis is carried out in CDCl(3). Incarcerated 3b is stable at room temperature in the absence of oxygen and is characterized by 1D and 2D NMR spectroscopy. In the presence of oxygen, 3b reacts quantitatively to yield toluene and CO(2). Upon heating solutions of d(48)-5 circle 3b in C(6)D(5)CD(3), 3b rearranges to 1b and m-tolylcarbene (18). Both tolylcarbenes immediately react with the surrounding host. From a product analysis and the measured rate constants for the thermal decomposition of d(48)-5 circle 3b in the temperature range 70-102 degrees C, the activation parameters for the 3b to 1b and 3b to 18 rearrangements are calculated (3b to 1b: DeltaG(373)++ = 27.3 +/- 1.4 kcal/mol, DeltaH(373)++ = 26.4 +/- 1.0 kcal/mol, TDeltaS(373)++ = -0.9 +/- 1.0 kcal/mol; 3b to 18: DeltaG(373)++ = 27.8 +/- 1.4 kcal/mol, DeltaH(373)++ = 19.7 +/- 1.0 kcal/mol, TDeltaS(373)++ = 8.1 +/- 1.0 kcal/mol). These values are compared with those calculated by Geise and Hadad at the B3LYP/6-311+G** level of theory (Geise, C. M.; Hadad, C. M. J. Org. Chem. 2002, 67, 2532-2540). The slightly higher inner phase activation free energy of the 3b to 18 rearrangement is explained through steric constraints imposed by the surrounding hemicarcerand on the transition state. The enthalpy-entropy compensation observed for the 3b to 18 rearrangement is discussed and interpreted as a result of a hemicarcerand and solvent reorganization along the reaction coordinate. It is taken as indirect evidence for the intermediacy of 2-methylbicyclo[4.1.0]hepta-2,4,6-triene in the 3b to 18 rearrangement.  相似文献   

19.
Thermochemical parameters of three C(2)H(5)O* radicals derived from ethanol were reevaluated using coupled-cluster theory CCSD(T) calculations, with the aug-cc-pVnZ (n = D, T, Q) basis sets, that allow the CC energies to be extrapolated at the CBS limit. Theoretical results obtained for methanol and two CH(3)O* radicals were found to agree within +/-0.5 kcal/mol with the experiment values. A set of consistent values was determined for ethanol and its radicals: (a) heats of formation (298 K) DeltaHf(C(2)H(5)OH) = -56.4 +/- 0.8 kcal/mol (exptl: -56.21 +/- 0.12 kcal/mol), DeltaHf(CH(3)C*HOH) = -13.1 +/- 0.8 kcal/mol, DeltaHf(C*H(2)CH(2)OH) = -6.2 +/- 0.8 kcal/mol, and DeltaHf(CH(3)CH(2)O*) = -2.7 +/- 0.8 kcal/mol; (b) bond dissociation energies (BDEs) of ethanol (0 K) BDE(CH(3)CHOH-H) = 93.9 +/- 0.8 kcal/mol, BDE(CH(2)CH(2)OH-H) = 100.6 +/- 0.8 kcal/mol, and BDE(CH(3)CH(2)O-H) = 104.5 +/- 0.8 kcal/mol. The present results support the experimental ionization energies and electron affinities of the radicals, and appearance energy of (CH(3)CHOH+) cation. Beta-C-C bond scission in the ethoxy radical, CH(3)CH2O*, leading to the formation of C*H3 and CH(2)=O, is characterized by a C-C bond energy of 9.6 kcal/mol at 0 K, a zero-point-corrected energy barrier of E0++ = 17.2 kcal/mol, an activation energy of Ea = 18.0 kcal/mol and a high-pressure thermal rate coefficient of k(infinity)(298 K) = 3.9 s(-1), including a tunneling correction. The latter value is in excellent agreement with the value of 5.2 s(-1) from the most recent experimental kinetic data. Using RRKM theory, we obtain a general rate expression of k(T,p) = 1.26 x 10(9)p(0.793) exp(-15.5/RT) s(-1) in the temperature range (T) from 198 to 1998 K and pressure range (p) from 0.1 to 8360.1 Torr with N2 as the collision partners, where k(298 K, 760 Torr) = 2.7 s(-1), without tunneling and k = 3.2 s(-1) with the tunneling correction. Evidence is provided that heavy atom tunneling can play a role in the rate constant for beta-C-C bond scission in alkoxy radicals.  相似文献   

20.
The unimolecular dissociation of CH3OOH is investigated by exciting the molecule in the region of its 5nu(OH) band and probing the resulting OH fragments using laser-induced fluorescence. The measured OH fragment rotational and translational energies are used to determine the CH3O-OH bond dissociation energy, which we estimate to be approximately 42.6+/-1 kcal/mol. Combining this value with the known heats of formation of the fragments also gives an estimate for the heat of formation of CH3OOH which at 0 K we determine to be deltaH(f)0=-27+/-1 kcal/mol. This experimental value is in good agreement with the results of ab initio calculations carried out at the CCSD(T)/complete basis set limit which finds the heat of formation of CH3OOH at 0 K to be deltaH(f)0=-27.3 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号