首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 580 毫秒
1.
In this study 21 amino acid standards, samples of pure phloem sap and samples of pooled mesophyll cells were derivatized with fluorescein isothiocyanate, separated by capillary electrophoresis and detected with laser-induced fluorescence at 488 nm. Two different background electrolytes, a sodium borate buffer containing sodium dodecyl sulfate and a sodium borate buffer containing alpha-cyclodextrin, were used for the separation. Using the sodium dodecyl sulfate buffer, 14 amino acid standards could be separated, spiking identified 12 amino acids in pure phloem sap and 13 amino acids in pooled mesophyll cells. With the alpha-cyclodextrin containing background electrolyte, a resolution of 20 amino acid standards could be attained, 17 amino acids in pure phloem sap and 10 amino acids in mesophyll cells could be assigned. Leucine and isoleucine comigrated in both buffer systems. All separations were performed with a voltage of +20 kV and completed within 30 min. The detection limits obtained were in the fmol range for the sodium dodecyl sulfate and in the pmol range for the alpha-cyclodextrin background electrolyte. Compared to the one published capillary electrophoresis-based method for the determination of amino acids from few plant cells, the procedure described here allows very high sensitivity due to the use of laser-induced fluorescence detection and opens the possibility to dilute and measure pl samples with an fully automated, commercially available CE system.  相似文献   

2.
Two methods are presented for the quantitative capillary electrophoretic (CE) determination of phenolic lignin degradation compounds as well as of inorganic anions and organic acids in Kraft black liquors. Important phenolic lignin degradation compounds can be rapidly separated by co-electroosmotic CE after acidification of the liquors and subsequent extraction of the compounds with chloroform. A capillary electrophoretic separation of phenolic compounds is performed by using a phosphate/borate electrolyte system and UV detection at 214 nm. In addition, a HPLC method using a gradient with water, methanol, and acetic acid is also developed. Inorganic ions which are of importance to the pulping process can be determined by simply diluting the black liquors after sampling and subsequent analysis with a chromate electrolyte system and indirect UV detection at 185 nm. In addition, the concentration of low molecular aliphatic carboxylic acids can be determined simultaneously within the same run. By method optimization it is possible to separate the anions within one minute and, at the same time, to increase the resolution of the solutes. The electrolyte systems for the CE separations were optimized by varying the pH value and by adding organic solvents. Short separation times are obtained by adding a polycationic EOF modifier (hexadimethrine bromide) to the electrolyte which reverses the electroosmotic flow. A migration of the anionic analytes in the same direction as the electroosmotic flow is thus established.  相似文献   

3.
The allantoin/uric acid (All/UA) ratio and malondialdehyde (MDA) plasma levels have been proposed as important markers for monitoring oxidation triggered by the action of free radicals (FR). Here, we describe an easy field amplified sample injection capillary electrophoresis method with UV detection for the separation and quantification of All, UA, and free MDA in human plasma. The plasma samples were simply filtered through centrifugation membrane tubes for protein elimination and directly injected on a capillary without complex cleanup and/or sample derivatization procedures. The use of a run buffer composed of 300 mmol/L sodium borate at pH 10 with 50 mmol/L of N-methyl-d-glucamine and an overimposed pressure/voltage of 0.1 psi during the electrophoretic run allows basline resolution of the analytes within 17 min. The electrokinetic injection allows a detection limit of 15 nmol/L for All, 20 nmol/L for UA and 10 nmol/L for MDA in a plasma sample, thus significantly improving the LOD of previous described methods based on capillary electrophoresis. Precision tests indicate a good repeatability of our method both for migration times (CV = 1.85%) and areas (CV = 2.87%). Moreover, a good reproducibility of intra- and inter-assay tests was obtained (CV = 4.63% and CV = 6.59% respectively). The suitability of the method was tested by measuring analyte levels in 40 healthy volunteers.  相似文献   

4.
The chiral separation of simendan enantiomers using capillary electrophoresis was studied with beta-cyclodextrin (beta-CD) as chiral selector. The influences of the concentration and pH of borate buffer solution, beta-CD concentration and methanol content in the background electrolyte were investigated. These factors were compared with those in an HPLC with beta-CD as chiral mobile phase additive (CMPA-HPLC). The quantification properties of the developed CE method were examined. A baseline separation of simendan enantiomers was achieved in the background electrolyte of 20 mmol/L borate buffer (pH 11.0) containing 12 mmol/L beta-CD-methanol (50:50 in volume ratio). The CE method is comparable with CMPA-HPLC in chiral resolution, although the optimal pH in CE (11.0) is much higher than that (6.0) in CMPA-HPLC. This chiral CE method is applicable to the quantitative ananlysis and enantiomeric excess value determination of L-simendan.  相似文献   

5.
The combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) via a triaxial interface was studied as a potential means for the characterization of intact proteins. To evaluate the possibility to use a nonvolatile electrolyte for CE, the effect of sodium phosphate and ammonium borate on the MS signal of the proteins insulin, myoglobin, and bovine serum albumin (BSA) was investigated by employing infusion experiments, and compared to the effect of ammonium formate and formic acid. The study shows that with formic acid (50 mM, pH 2.4) the most intense protein signals were obtained, while the use of sodium phosphate buffer (5 and 10 mM, pH 7.5) almost completely diminished the MS response. Ammonium formate and ammonium borate (up to 100 mM, pH 8.5) also caused protein ion suppression, but especially with the borate buffer significant MS intensity remained. MS analysis of myoglobin revealed the loss of the heme group when an acidic CE electrolyte was used. Using a background electrolyte containing 25 mM ammonium borate (pH 8.5), it is demonstrated that a CE separation of a protein test mixture can be monitored with ESI-MS without degrading the MS performance allowing molecular weight determinations of the separated compounds. In the presence of borate, detection limits were estimated to be 5-10 microM (ca. 100 fmol injected). The usefulness of the CE-MS system employing a borate buffer is indicated by the analysis of a stored sample of BSA revealing several degradation products. A sample of placental alkaline phosphatase (PLAP), a potential therapeutic agent, was also analyzed by CE-MS indicating the presence of a protein impurity. Probably due to insufficient ionization of the PLAP (a complex glycoprotein), no MS signals of the intact protein were observed.  相似文献   

6.
The quantitative determination of usnic acid (UA), perlatolic acid (PA), and atranorin (AT) in Alaska lichens by micellar electrokinetic chromatography (MEKC) is reported. The background electrolyte (BGE) included sodium docecyl sulfate (SDS), and beta-cyclodextrin (beta-CD) in a high-pH borate buffer. The presence of beta-CD in the buffer significantly decreases peak width, especially for UA, as it decreases migration time for both UA and PA. Linear calibration curves for UA, PA, and AT were established using an internal standard of benzoic acid (BA). Concentration limits of detection (cLODs) are 2.5, 2.2 and 2.0microg/mL (S/N 3) for UA, PA, and AT, respectively. Dry samples of lichen were extracted at room temperature with acetone for 24h in the presence of BA as internal standard. Recoveries of UA from spiked samples ranged from 92 to 98%. Amounts of UA and PA in the lichen samples ranged from 0.28 to 1.7% dry weight and 0.02 to 0.23%, respectively.  相似文献   

7.
A method is reported which allows the quantification of homotaurine as an impurity in the drug. After addition of taurine as an internal standard, the sample is derivatised with fluorescamine at ambient temperature in 10 mM borate buffer, pH 9.2. The analytes are separated by capillary zone electrophoresis in a 31.2 cm (21 cm to the detector) x 100 microns I.D. fused-silica capillary at a potential of +7 kV and 25 degrees C. A 40 mM borate buffer, pH 9.2, is used as the electrolyte and detection is carried out at 205 nm. The validation tests showed that the method is reliable between 0.01% and 0.15% (m/m) of homotaurine with respect to the active drug. The limits of quantitation (0.01%, m/m) and detection (0.004%, m/m) allows to control the homotaurine content of the drug substance for which the maximum tolerated level is 0.05% (m/m). The proposed procedure (derivatisation and separation) developed in CE is rapid (20-25 min) by comparison to that currently used in HPLC (75 min). Satisfactory agreement was found between several batches of acamprosate analysed by CE and HPLC.  相似文献   

8.
Yang J  Hu M  Cai Y  Tang J  Li H 《Journal of separation science》2010,33(23-24):3710-3716
A CZE with indirect LIF detection method was used for the determination of uric acid (UA) in human urine. UA and its coexisting analytes (i.e. hypoxanthine, xanthine and ascorbic acid) could be well separated within 4.5?min at a voltage of 25?kV with 25°C cartridge temperature in a running buffer composed of 5?mM sodium borate, 10% methanol (v/v) and 0.3?μM fluorescein sodium (apparent pH of the final mixed hydro-organic solution of sodium borate, methanol and fluorescein is 9.5). Under the optimum condition, the method has good linearity relationships (correlation coefficients: 0.9973-0.9987) with ranges of 25-500, 25-350, 25-250 and 25-300?μg/mL for hypoxanthine, ascorbic acid, xanthine and UA, respectively. The detection limits for the analytes were in the range of 0.29-0.90?μg/mL. The intra-day RSD values for migration times and peak areas were less than 0.43 and 3.27%, respectively. This method was applied to the quantitation of UA in human urine with recoveries in the range of 93.1-107.3%.  相似文献   

9.
Summary A capillary electrophoretic method for the determination of lansoprazole in pharmaceutical preparations is described. The analysis was performed in a fused silica capillary using 20 mM borate buffer at pH 8.7 as a background electrolyte. The best resolution was obtained by applying a potential of 30 kV and vacuum injection of 1 s. Detection was made at 200 nm. Phenobarbital sodium was a good internal standard and the migration times were 4.1±0.2 min (lansoprazole) and 5.7±0.2 min (phenobarbital sodium). A well-correlated calibration equation was found in the range of 1.12×10−5 and 2.24×10−4 M. Limit of detection (LOD) and limit of quantitation (LOQ) were 1.4×10−6 M (RSD 1.44%) and 4.42×10−6 M (RSD 1.49%), respectively. The method was validated and applied to the capsules containing enteric coated pellets of lansoprazole. The results of the proposed method were compared those of UV spectrophotometry. Insignificant differences were found between the two methods at the 95% probability level. The described CE method is selective, rapid, sensitive and accurate for the analysis of lansoprazole in quality control laboratories.  相似文献   

10.
A capillary electrophoresis (CE) with UV absorption detection method is described for the simultaneous determination of glufosinate, glyphosate, and aminomethylphosphoric acid. The 9‐fluorenylmethyl chloroformate (FMOC‐Cl) was used for precolumn derivatization of the non‐absorbing herbicides. The three analytes were separated by CE in 9 min with 25 mM borate buffer at pH 9, followed by detection with a UV detector at 260 nm. We demonstrate how the detection limit can be enhanced by using acetonitrile‐salt mixtures. With acetonitrile‐salt mixtures, the limit of detection (LOD) was in the 10?7 M range. Linearity of more than two orders of magnitude was generally obtained. Precisions of migration times and peak areas were less than 0.9% and 7.5%, respectively. The applicabilities of the method for the analysis of ground water and lake water were examined.  相似文献   

11.
Anodic voltammetric method for simultaneous determination of uric acid (UA) and ascorbic acid (AA) in urine has been developed with the use of a commercial working rotating glassy carbon electrode. UA may be determined in a sample diluted by the buffer supporting electrolyte (HOAc+NH(4)OH; pH 5.1-5.2) approximately 100 times, and AA-in a sample diluted approximately 20 times. Before obtaining the analytical signal the electrode should be maintained in the diluted sample during 3 min at potential 0 V and the working electrode rotating 100 rpm, for achievement of the adsorption equilibrium of inhibitors from the urine matrix. For UA the electron transfer is close to reversible, for AA it is an irreversible one. Optimal voltammetric techniques are the square-wave for UA and the differential pulse for AA. Calibration curves, detection limits and recoveries for both determinations were evaluated as satisfactory.  相似文献   

12.
An enantioselective method for baclofen (4-amino-3-p-chlorophenylbutyric acid) based on capillary electrophoresis (CE) separation and laser-induced fluorescence (LIF) detection has been developed. Naphthalene-2,3-dicarboxaldehyde (NDA) was used for precolumn derivatization of the nonfluorescent drug. alpha-Cyclodextrin (alpha-CD) was included in the buffer as a chiral selector for the separation of NDA-labeled S-(+)- and R-(-)-baclofen. Optimal resolution and detection were obtained with an electrophoretic buffer of 50 mM sodium borate (pH 9.5) containing 7 mM alpha-CD and a He-Cd laser (lambda ex = 442 nm, lambda em = 500 nm). Combined with a simple cleanup procedure, this method can be applied to the analysis of baclofen enantiomers in human plasma. The relative standard deviation (RSD) values on peak areas of a plasma sample containing 1.0 microM racemic baclofen were 6.4 and 4.9% (n = 8) for the S-(+)- and R-(-)-enantiomer, respectively. The RSD value on migration times of both enantiomers was 0.5% (n = 8). Calibration graphs for S-(+)- and R-(-)-baclofen in plasma showed a good linearity (r > or = 0.999) in the concentration range of 0.1-2.0 microM. The limit of detection of baclofen in plasma was about 10 ng/mL.  相似文献   

13.
A new capillary zone electrophoresis (CZE) method was developed for simultaneous assay of four chalcones, hydroxysafflor yellow A, safflor yellow A, safflamin C, and safflamin A, in the Chinese herbal extract from Carthamus tinctorius L. The optimum buffer system was 30 mM borate buffer (Na2B407/HCl, pH 9.00) with 10% (v/v) methanol. The voltage was 15 kV and detection was at 270 nm. Regression equations revealed linear relationships (correlation coefficients: 0.9973, 0.9992, 0.9989, and 0.9996) between the peak area of each compound and its concentration. The within-day relative standard deviations of migration times and peak areas were < 1.53 and 4.14%, respectively. The effects of several CE parameters on the resolution were studied systematically. The contents of four chalcones in Carthamus tinctorius L. were successfully determined with satisfactory repeatability and recovery. The possibilities of using this method for the determination of chalcones in Chinese medicinal preparation was also tested.  相似文献   

14.
Diao P  Yuan H  Huo F  Chen L  Xiao D  Paau MC  Choi MM 《Talanta》2011,85(3):1279-1284
A simple and sensitive method has been developed for simultaneous analysis of three catecholamines: dopamine (DA), epinephrine (EP) and norepinephrine (NE) in urine by capillary electrophoresis (CE) coupled with in-column fiber-optic light-emitting diode-induced fluorescence detection (ICFO-LED-IFD). Fluorescein isothiocyanate was used as the fluorescence tagged reagent for derivatization of DA, EP and NE. The CE conditions for separation of these catecholamines were systematically investigated. It was found that catecholamines could be more effectively separated by adding β-cyclodextin (β-CD) and acetonitrile (ACN) to a background electrolyte (BGE) of sodium borate. The migration times are 10.61, 10.83 and 11.14 min for DA, EP and NE, respectively and the catecholamines are completely separated within 11.5 min under the optimal condition of a BGE containing 10% v/v ACN, 20 mM β-CD and 20 mM sodium borate (pH 9.5), and an applied voltage of 13 kV. The relative standard deviations of migration time and peak area for these catecholamines are less than 0.16 and 2.0%, respectively. The limit of quantifications (LOQs) for DA, EP and NE are 3.5, 1.0 and 3.1 nM whereas the limit of detections (LODs) for DA, EP and NE are 1.0, 0.3 and 0.9 nM, respectively. Our proposed CE method provides low LOQ and LOD values. This CE-ICFO-LED-IFD methodology has been successfully applied to analyze catecholamines in human urine samples with good accuracy and satisfactory recovery.  相似文献   

15.
制备了甘氨酸-壳聚糖复合膜修饰玻碳电极(Gly-CTS/GCE),研究了抗坏血酸(AA)和尿酸(UA)在该修饰电极上的电化学行为。结果表明在pH=5.59的磷酸盐缓冲溶液中,AA、UA在Gly-CTS/GCE上均产生灵敏的不可逆氧化峰,其峰电流与浓度在一定范围内呈良好的线性关系。对AA和UA混合溶液平行测定7次,相对标准偏差分别为4.6%、2.9%,表明该电极重现性和稳定性良好。AA、UA在Gly-CTS/GCE电极上的氧化峰峰电位相差340mV,据此可实现对二者的同时检测,并可应用于实际样品测定。  相似文献   

16.
Tabuchi M  Baba Y 《Electrophoresis》2002,23(7-8):1138-1145
We have developed a new sample injection method for capillary electrophoresis (CE) that reduces the required migration time. We demonstrated a pressurization technique that was performed with buffer in the outlet after the electrokinetic sample injection with no buffer in the outlet. To reduce the migration time, the sample injection had to be performed with no buffer in the outlet; water should be pressurized while the buffer is in the outlet. Though the resolution was slightly decreased using this method, the addition of a separation carrier (curdlan) to the run buffer restored the resolution without delaying the migration time. The use of our new sample injection method combined with our high-quality separation carrier will enable us to improve the efficiency of the high-throughput screening (HTS) system for proteome analysis.  相似文献   

17.
18.
A method of micellar electrokinetic capillary electrophoresis for determining the six flavonoids in Scutellariae Radix (i.e., baicalin, baicalein, wogonin 7-O-glucuronide, wogonin, oroxylin A 7-O-glucuronide, and oroxylin A) has been developed. The buffer solution (pH 7.24) composed of 20 mM sodium dodecyl sulfate (SDS), 20 mM sodium dihydrogen phosphate, and 25 mM sodium borate was found to be the most suitable electrolyte for the separation. The contents of the six flavonoids in crude Scutellariae Radix could easily be determined within about 15 min. On-column UV (254 nm) monitoring allowed the quantitative determination of baicalin. The effects of pH, surfactant concentration, and applied voltage on the migration behavior of the solutes were studied.  相似文献   

19.
齐莉  周蓉 《化学分析计量》1999,8(3):10-11,21
应用胶束电动毛细管色谱技术分离黄芩中主要的黄酮类有效成分并进行分析,确定它们分别是:黄芩甙、黄芩素、汉黄芩甙、汉黄芩素、木蝴蝶素A及木蝴 A-7-D-葡萄糖甙。缓冲液由20mmol/LSDS、20mmol/LL的磷酸三氮钠及25mmol/L的硼砂组成,溶液的P来7.24。在胶束电动车管色谱分析中,黄芩中的主要黄酮类有铲成分在15min内即可达到基线分离,并且能对黄芩甙进行定量分析,笔者还讨论了表面  相似文献   

20.
Han Y  Chen Y 《Electrophoresis》2007,28(15):2765-2770
A novel method has been developed for the on-column labeling of amino acid enantiomers with 9-fluoroenylmethyl chloroformate (FMOC), followed by chiral CE with a binary chiral selector system and UV detection. Efficient labeling was achieved by sequential injection of amino acids, borate buffer, and FMOC labeling solution at 0.2 psi for 6 s. After injection, the sandwich sections were electrically mixed at 250 V/cm for 6 s and allowed to react (electric field-free) at room temperature for 2 min. With this procedure, successful online-labeling and chiral CE separation of 19 pairs of amino acids (AA) have been conducted, giving 17 pairs fully enantioresolved (R(s) = 1.73-5.79) and two pairs partially resolved (Ala, R(s) = 0.39 and Arg, R(s) = 1.15) using a running buffer of 150 mM borate containing 30 mM beta-CD, 30 mM sodium taurodeoxycholate (STDC), and 15% isopropanol (IPA) at pH 9.0. Chiral CE of some mixed pairs was also demonstrated, much the same as using precolumn labeling. Surprisingly, Met, Asp, Asn, Gln, and His gained even higher enantioresolution (up to 2.5%) compared with the case of precolumn labeling. As validated by both artificially prepared solutions and serum samples, the method was applicable to the quantitative determination of AA, with LODs down to 4.0 microM. The method allowed the determination of D-AA at the ratio of 1:100 (D:L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号