首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A molecularly imprinted polymer (MIP) has been prepared for the first time with ciprofloxacin (CIPRO) as the template molecule, via a noncovalent synthetic procedure. Prior to its use as a sorbent in SPE, the MIP was evaluated chromatographically to confirm that it was indeed molecularly imprinted. The MIP was then used to extract CIPRO selectively from urine samples by means of a two-step SPE procedure in which a commercial Oasis cartridge and a molecularly imprinted SPE cartridge were combined in series. This approach allowed the matrix compounds present in the samples to be removed effectively. The urine extracts obtained after this two-step SPE procedure was applied were relatively clean compared to the original samples, and this made it possible to inject directly the extracts into a mass spectrometer and thus quantify CIPRO in urine samples at low levels and reduce the time of analysis.  相似文献   

2.
A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of salmeterol xinafoate (SLX) from human serum. In this study, semi-empirical PM3 calculations were used to find a suitable functional monomer (FM), the ratio of template (T) to FM, and types of crosslinkers. MIPs were synthesized with 2-hydroxyethyl methacrylate (HEMA) with T:FM mol ratios of 1:6 and 1:4 and ethylene glycol dimethacrylate (EGDMA) or trimethylolpropane trimethacrylate (TRIM) as a crosslinker. On the basis of computational and experimental results, HEMA and TRIM in the mol ratio 1:6 of T-FM (MIP3) were found to be the best choices of FM and crosslinker, respectively. These polymers were then used as a selective sorbent to develop a molecularly imprinted solid-phase extraction procedure followed by high performance liquid chromatography with UV detection for the determination of SLX in serum. The extraction ability of MIP3 was excellent with a recovery of 92.17% ± 2.66% of SLX in spiked serum, and 91.15% ± 1.12% when SLX was spiked as a mixture with another analogous structure. By comparing the performance of the synthesized sorbent with a C-18 cartridge with a recovery of 79.11% ± 2.96%, it was determined that MIP had better performance over the latter. On the basis of these results, the imprinted receptor MIPs, especially MIP 3, can be applied for the direct extraction of SLX in clinical analysis.  相似文献   

3.
In this paper we describe the synthesis, characterisation and use of two distinct molecularly imprinted polymers (MIPs) prepared using esters of p-hydroxybenzoic acid (parabens) as templates: one MIP was synthesised by precipitation polymerisation using a semi-covalent molecularly imprinting strategy with methyl paraben as the template/target (MIP 1); the second MIP was prepared in monolithic form through a conventional non-covalent molecular imprinting strategy, with butyl paraben as the template (MIP 2). MIP 1 recognized methyl paraben, showed cross-selectivity for other parabens analytes used in the study and higher affinity towards these compounds than did a non-imprinted control polymer. Similarly, MIP 2 demonstrated higher affinity towards paraben analytes than a non-imprinted control polymer.For the analysis of environmental water samples, a solid-phase extraction (SPE) protocol was developed using MIP 2 as sorbent, and results were compared to a SPE using a commercial sorbent (Oasis HLB). With MIP 2 as sorbent and butyl paraben as target, when percolating 500 mL of river water spiked at 1 μg L−1 through the SPE cartridge, and using 1 mL of isopropanol as cleaning solvent, a higher recovery of butyl 4-hydroxybenzoate (butyl paraben) and a cleaner chromatogram where achievable when using the MIP compared to the commercial sorbent.  相似文献   

4.
Solid-phase extraction (SPE) with a molecularly imprinted polymer (MIP) as sorbent has been investigated for the clean-up of the broad-spectrum bacteriostatic antibiotic chloramphenicol (CAP) in honey samples. The MIP was prepared by using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as cross-linker, chloroform as porogen and CAP as template molecule. The binding behaviour of the template CAP on the MIP was evaluated by high-performance liquid chromatography, and then the MIP was applied as a sorbent in SPE to selectively extract CAP from honey. It was shown that recoveries of nearly 100% of a CAP standard solution and up to 94% from spiked honey samples could be obtained after SPE.  相似文献   

5.
以咖啡因作为模板分子,α-甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,制备了咖啡因分子印迹聚合物(MIP)。与非印迹聚合物(NIP)相比,MIP对咖啡因具有更高的吸附容量和选择性,MIP和NIP对咖啡因的最大静态吸附量分别为28.1和16.5mg/g,相对选择因子为1.25。以咖啡因分子印迹聚合物为固相萃取填料,结合高效液相色谱(HPLC),建立了茶水中咖啡因浓度及人饮茶后血清中咖啡因浓度的检测方法。考察了洗脱剂种类和用量对咖啡因回收率的影响。当萃取柱依次以2mL水活化,水溶液上样,2mL水淋洗,6mL甲醇-乙酸(9∶1,V/V)洗脱,咖啡因在MIP固相萃取柱上的回收率达到97.5%,而在NIP柱上的回收率仅为54.9%。  相似文献   

6.
The aim of this work was to develop a method for the clean-up of a mycotoxin, i.e. Ochratoxin A (OTA), from cereal extracts employing a new molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) and to compare with an immunoaffinity column. A first series of experiments was carried out in pure solvents to estimate the potential of the imprinted sorbent in terms of selectivity studying the retention of OTA on the MIP and on a non-imprinted polymer using conventional crushed monolith. The selectivity of the MIP was also checked by its application to wheat extracts. Then, after this feasibility study, two different formats of MIP: crushed monolith and micro-beads were evaluated and compared. Therefore an optimization procedure was applied to the selective extraction from wheat using the MIP beads. The whole procedure was validated by applying it to wheat extract spiked by OTA at different concentration levels and then to a certified contaminated wheat sample. Recoveries close to 100% were obtained. The high selectivity brought by the MIP was compared to the selectivity by an immunoaffinity cartridge for the clean-up of the same wheat sample. The study of capacity of both showed a significant higher capacity of the MIP.  相似文献   

7.
In this work, performance of a molecularly imprinted polymer (MIP) as a selective solid‐phase microextraction sorbent for the extraction and enrichment of tramadol in aqueous solution and rabbit brain tissue, is described. Binding properties of MIPs were studied in comparison with their nonimprinted polymer (NIP). Ten milligrams of the optimized MIP was then evaluated as a sorbent, for preconcentration, in molecularly imprinted solid‐phase microextraction (MISPME) of tramadol from aqueous solution and rabbit brain tissue. The analytical method was calibrated in the range of 0.004 ppm (4 ng mL−1) and 10 ppm (10 μg mL−1) in aqueous media and in the ranges of 0.01 and 10 ppm in rabbit brain tissue, respectively. The results indicated significantly higher binding affinity of MIPs to tramadol, in comparison with NIP. The MISPME procedure was developed and optimized with a recovery of 81.12–107.54% in aqueous solution and 76.16–91.20% in rabbit brain tissue. The inter‐ and intra‐day variation values were <8.24 and 5.06%, respectively. Finally the calibrated method was applied for determination of tramadol in real rabbit brain tissue samples after administration of a lethal dose. Our data demonstrated the potential of MISPME for rapid, sensitive and cost‐effective sample analysis.  相似文献   

8.
In this work, a molecular imprinted polymer (MIP) as a novel selective sorbent for extraction of 3,4-methylenedioxymethamphetamine (MDMA) from plasma samples was prepared. For selecting a more suitable monomer and polymerization solvent a methodology based on density functional theory calculations was developed. This computational design is based on the comparison of stabilization energies of the prepolymerization adducts between the template and different functional monomers. The effect of polymerization solvent was studied using of polarizable continuum model (PCM). The computational results revealed that the best suitable monomer and polymerization solvent for preparation of MIP is methacrylic acid (MAA) and chloroform, respectively. Also, another MIP with methacrylic acid (MAA) as monomer in acetonitrile was prepared to evaluate the validity of polarizable continuum model for selection of polymerization solvent. The performance of each polymer was evaluated by using Langmuir-Freundlich (LF) isotherm. As it is expected, the best results were obtained for the MIP which was prepared in chloroform. This MIP was used as a selective sorbent in solid-phase extraction coupled with high performance liquid chromatography-ultraviolet detector (MISPE-HPLC-UV) for rapid screening of MDMA in human plasma. For the proposed MISPE-HPLC-UV method, the linearity between responses (peak areas) and concentrations was found over the range of 3.6-11500 ng mL(-1) with a linear regression coefficient of 0.998. The limit of detection (LOD) and quantification (LOQ) in plasma were 1.0 and 3.3 ng mL(-1), respectively. The %RSD (n=5) data for five plasma samples containing 15, 25, 50, and 100 ng mL(-1) of MDMA were 1.02, 1.12, 2.05, 2.54, respectively.  相似文献   

9.
染料木素分子印迹聚合物的制备及其识别性能   总被引:1,自引:0,他引:1  
以染料木素为模板分子、4-乙烯基吡啶(4-VP)为功能单体、乙二醇二甲基双丙烯酸酯(EGDMA)为交联剂、四氢呋喃(THF)为溶剂,采用本体聚合法制备了染料木素的分子印迹聚合物;采用静态平衡结合实验研究了该分子印迹聚合物对染料木素的结合能力和选择性能.结果表明,与化学组成相同的相应非印迹聚合物相比,染料木素分子印迹聚合物对染料木素的吸附性能和选择性更好.利用所合成的分子印迹聚合物作为固相萃取材料填充固相萃取小柱,可以选择性地从豆奶粉中分离、富集染料木素;此外,该分子印迹聚合物还有望用于其他豆制品的分析检验.  相似文献   

10.
Qi P  Wang J  Li Y  Su F  Jin J  Chen J 《Journal of separation science》2011,34(19):2712-2718
A molecularly imprinted polymer (MIP) was prepared using monobutyl phthalate as template. The synthesis was optimized by using different porogens and functional monomers. The MIP was used as a selective sorbent in molecularly imprinted solid-phase extraction (MIP-SPE) for pre-concentration and determination of monobutyl phthalate (mBP) from the bottled water. The difference in recognition selectivity of the polymer columns was observed in HPLC system, and the effect of the mobile phase on the performance of MIP columns was also investigated. Control of the MIP-SPE process is seen as important in helping to facilitate the selective extraction of mBP from water samples. Thereafter, the choice of washing solvent, eluting solvent amount, pH of loading sample, flow rate of loading solution and the loading sample volume was presented. The optimized procedure was described as follows: 25 mL spiked aqueous solution was percolated through the MIP-SPE cartridge at the flow rate of 1.5 mL/min. After rinsing with acetonitrile/methanol mixture (1:1, v/v), the bound analyte was desorbed with 3 mL methanol. The developed MIP-SPE method was demonstrated to be applicable for the analysis of mBP in the bottled water.  相似文献   

11.
A new polymeric sorbent synthesised by exploiting molecular imprinting technology has been used to selectively extract naphthalene sulfonates (NSs) directly from aqueous samples. In the non-covalent molecular imprinting approach used to prepare this polymer, 1-naphthalene sulfonic acid (1-NS) and 4-vinylpyridine (4-VP) were used as a template molecule and functional monomer, respectively, and both dissolved in a mixture of methanol/water (4:1) as porogen together with the cross-linker ethylene glycol dimethacrylate. The new non-covalent molecularly imprinted polymer (MIP) prepared in aqueous environment was used as a sorbent in solid-phase extraction (SPE) to selectively extract a group of naphthalene mono- and disulfonates. When one litre of a standard aqueous solution, which contained a mixture of eight NSs, was percolated through the SPE cartridge, all the NSs were retained on the MIP because of the cross-reactivity of the polymer. Recoveries were higher than 80% for all the compounds even after a clean-up step with methanol (MeOH). The MIP was also used to analyse water from the Ebro river.  相似文献   

12.
In this paper we describe the synthesis of a molecularly imprinted polymer (MIP) by precipitation polymerisation, with barbital as the template molecule, and the application of the barbital MIP as a molecularly selective sorbent in the solid-phase extraction (SPE) of barbiturates from human urine samples. The MIP was synthesised by precipitation polymerisation using 2,6-bis-acrylamidopyridine as the functional monomer and DVB-80 as the cross-linking agent. The spherical MIP particles produced were 4.2 ± 0.4 μm in diameter; a non-imprinted control polymer (NIP) in bead form was 4.8 ± 0.4 μm (mean±standard deviation) in diameter. The particles were packed into a solid-phase extraction cartridge and employed as a novel sorbent in a molecularly imprinted solid-phase extraction (MISPE) protocol. The MIP showed high selectivity for the template molecule, barbital, a feature which can be ascribed to the high-fidelity binding sites present in the MIP which arose from the use of 2,6-bis-acrylamidopyridine as the functional monomer. However, the MIP also displayed useful cross-selectivity for other barbiturates besides barbital. For real samples, the MIP was applied for the extraction of four barbiturates from human urine. However, due to the high urea concentration in this sample which interfere the proper interaction of barbiturates onto the MIP, a tandem system using a commercially available sorbent was developed.  相似文献   

13.
A molecularly imprinted polymer (MIP) was synthesized and evaluated to selectively extract an alpha-blocker, i.e. alfuzosin, from human plasma. The synthesis of the MIP was performed in dichloromethane with methacrylic acid as monomer and the target drug as template. A first series of experiments was carried out in dichloromethane to estimate the potential of the MIP in its specific recognition medium, i.e. dichloromethane, by developing a selective procedure and by measuring the capacity of the sorbent. An optimized procedure was developed for the selective extraction of alfuzosin with a recovery close to 100% in this medium and a specific capacity of 1.3 micromol g(-1) of MIP was measured. A study in aqueous media was also carried out by a comprehensive approach of the retention mechanism in order to build a selective procedure of extraction. The effects of the amount and of the charge of cations were studied and an optimal pH value was defined to limit matrix effects. Then, the alfuzosin MIP was then directly used to selectively extract the target drug from human plasma with an extraction recovery of 60%. Lastly, a soil was extracted by a pressurized solvent and the resulting extract was cleaned up on the MIP, showing the possibility to use this selective sorbent for the sample treatment of various complex matrices.  相似文献   

14.
A molecularly imprinted polymer (MIP) based on free‐radical polymerization was prepared with 1‐(N,N‐biscarboxymethyl)amino‐3‐allylglycerol and N,N‐dimethylacrylamide as functional monomers, N,N‐methylene diacrylamide as the cross‐linker, copper ion‐clonazepam as the template and 2,2‐azobis(2‐methylbutyronitrile) as the initiator. The imprinted polymer was characterized by Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, and SEM. The MIP of agglomerated microparticles with multipores was used for SPE. The imprinted polymer sorbent was selective for clonazepam. The optimum pH and sorption capacity were 5 and 0.18 mg/g at 20°C, respectively. The profile of the drug uptake by the sorbent reflects good accessibility of the active sites in the imprinted polymer sorbent. The MIP‐SPE was the most feasible technique for the extraction of clonazepam with a high recovery from human plasma and urine samples.  相似文献   

15.
In this paper we describe, for the first time, a molecularly imprinted polymer (MIP) for the antibiotic amoxicillin (AMX), synthesised by a noncovalent molecular imprinting approach and used to extract AMX selectively from urine samples. The MIP was applied as a molecularly selective sorbent in molecularly imprinted SPE (MISPE) in an off-line mode, where it showed useful cross-selectivity for a structurally related antibiotic, cephalexin (CPX). By using a MISPE protocol, the MIP was able to selectively extract both AMX and CFX from 5 mL of water spiked with 10 mg/L with recoveries of 75 and 78% for AMX and CFX, respectively. When applied to real samples (urine) at clinically relevant concentrations, recoveries from 2 mL of human urine spiked with 20 mg/L decreased slightly to 65 and 63% for AMX and CFX, respectively. To demonstrate further the selectivity of the MIP obtained, a comparison with commercially available SPE cartridges was performed. Improvements in the retention of both AMX and CFX on the MIP were obtained relative to the commercially available cartridges, and the MISPE extracts were considerably cleaner, due to molecularly selective analyte binding by the MIP.  相似文献   

16.
An efficient and sensitive analytical method based on molecularly imprinted solid‐phase extraction (MISPE) and reverse‐phase ultrasound‐assisted dispersive liquid–liquid microextraction (USA‐DLLME) coupled with LC–MS/MS detection was developed and validated for the analysis of urinary 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanol (NNAL), a tobacco‐specific nitrosamine metabolite. The extraction performances of NNAL on three different solid‐phase extraction (SPE) sorbents including the hydrophilic‐lipophilic balanced sorbent HLB, the mixed mode cationic MCX sorbent and the molecularly imprinted polymers (MIP) sorbent were evaluated. Experimental results showed that the analyte was well retained with the highest extraction recovery and the optimum purification effect on MIP. Under the optimized conditions of MIP and USA‐DLLME, an enrichment factor of 23 was obtained. Good linearity relationship was obtained in the range of 5‐1200 pg/mL with a correlation coefficient of 0.9953. The limit of detection (LOD) was 0.35 pg/mL. The recoveries at three spiked levels ranged between 88.5% and 93.7%. Intra‐ and inter‐day relative standard deviations varied from 3.6% to 7.4% and from 5.4% to 9.7%, respectively. The developed method combing the advantages of MISPE and DLLME significantly improves the purification and enrichment of the analyte and can be used as an effective approach for the determination of ultra‐trace NNAL in complex biological matrices.  相似文献   

17.
A molecularly imprinted polymer (MIP) able to selectively bind triclosan (TCS) and triclocarban (TCC), commonly used antibacterial agents in many consumer products, was prepared using noncovalent molecular imprinting methods. The prepared MIP was evaluated as a selective sorbent in SPE for sample cleanup before HPLC-UV analysis of TCS and TCC in soil and biosolid samples. The MIP was also compared with commercially available C18 SPE sorbent. The molecularly imprinted SPE (MISPE) developed in this study was more efficient than C18 SPE for the cleanup of extracts of soil and biosolid samples prior to the analysis of TCC and TCS using HPLC-UV. The LOQ values for both TCC and TCS in the soil samples were determined to be 40 microg/kg; in the biosolid samples, the LOQ values were 100 and 300 microg/kg for TCC and TCS, respectively. Compared to C18 SPE, using MISPE for sample cleanup may result in a significant reduction of analytical cost, because one MIP can be reused up to 35 times and HPLC-UV instead of HPLC/MS can be used for instrumental analysis following sample cleanup by MISPE.  相似文献   

18.
A 2-(3,4-dimethoxyphenyl)ethylamine imprinted polymer (MIP(pt) ) was prepared via the precipitation polymerization together with a nonimprinted polymer (NIP). The morphology of particles was investigated by scanning electron microscopy and the specific surface areas were estimated by methylene blue adsorption (60.5 ± 3.5 and 36.9 ± 1.2 m(2)/g for MIP(pt) and NIP, respectively). The binding experiments were performed to determine the binding capacity of MIP(pt)/NIP particles toward dopamine. Next, the effects of solvents on loading, washing, and eluting steps were examined on solid-phase extraction (SPE). Methanol-water 85:15 v/v (loading step), methanol (washing step), and 0.04 M aqueous ammonium acetate-methanol 30:70 v/v (eluting step) were selected as the most effective systems. Described SPE protocol was successfully applied for separation of dopamine on 2-(3,4-dimethoxyphenyl)ethylamine imprinted particles. Finally, the molecularly imprinted polymer was used for determination of dopamine in spiked banana extract. The total recovery of dopamine from MIP(pt) was equal to 88.5 ± 4.6%, but from NIP was only 12.8 ± 2.3%. The developed material and method were demonstrated to be applicable for the separation of dopamine from bananas. The commercial sorbent C18 was not suitable to such application.  相似文献   

19.
A newly synthesized copolymer based on N-vinylimidazole-divinylbenzene (NVIm-DVB) was evaluated as a mixed-mode anion-exchange sorbent for SPE, since the NVIm monomer apart from its hydrophilic properties can be protonated at a certain pH, and then performs as an anion-exchanger. To investigate the behavior of the NVIm-based sorbent, the SPE performance was evaluated under reversed-phase (RP), weak anion-exchange, and strong anion-exchange conditions. The results for the NVIm-DVB sorbent were also compared to commercial reference sorbents from each group: Oasis HLB, Oasis WAX, and Oasis MAX, respectively. SPE results from this evaluation showed that NVIm-DVB can be used as an RP material, compared to Oasis HLB. It also has the potential to act as a strong anion-exchange sorbent, compared to Oasis MAX, since under the proper conditions it was able to fraction and quantitatively recover a group of selected solutes.  相似文献   

20.
A new molecularly imprinted polymer for extraction of crocin from saffron stigmas was prepared using gentiobiose (a glycoside moiety in crocin structure) as a template. Crocin binding to gentiobiose imprinted polymer (Gent‐MIP) was studied in comparison with a blank nonimprinted polymer in aqueous media. Affinity of the Gent‐MIP for the crocin was more than the nonimprinted polymer at all concentrations. In Scatchard analysis, the number of binding sites in each gram of polymer (maximum binding sites) and dissociation constant of crocin to binding sites were 18.4 μmol/g polymer and 11.2 μM, respectively. The Gent‐MIP was then used as the sorbent in an SPE method for isolation and purification of crocin from methanolic extract of saffron stigmas. The recovery of crocin, safranal and picrocrocin was determined in washing and elution steps. The Gent‐MIP had significantly higher affinity for crocin than other compounds and enabled selective extraction of crocin with a high recovery (84%) from a complex mixture. The results demonstrated the possibility of using a part of a big molecule in preparing a molecularly imprinted polymer with a good selectivity for the main structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号