首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tseng SH  Yang YH  Chen YR  Chen SH 《Electrophoresis》2004,25(10-11):1641-1647
A simple micellar capillary electrokinetic chromatography (MEKC) with UV detection is described for analysis of cefepime in plasma and cerebrospinal fluid by direct injection without any sample pretreatment. The separation of cefepime from biological matrix was performed at 25 degrees C using a background electrolyte consisting of tris(hydroxymethyl)aminomethane (Tris) buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Under optimal MEKC condition, good separation with high efficiency and short analyses time is achieved. Several parameters affecting the separation of the drug were studied, including the pH and concentrations of the Tris buffer and SDS. Using cefazolin as an internal standard, the linear ranges of the method for the determination of cefepime in plasma and cerebrospinal fluid were 1-50 and 1-20 microg/mL, respectively; the detection limits of plasma (signal-to-noise ratio = 3; injection, 5 kV, 5 s) and cerebrospinal fluid (signal-to-noise ratio = 3; injection, 0.5 psi, 3 s) were 0.2 microg/mL and 0.3 microg/mL, respectively. Application of the proposed method for determination of cefepime in plasma and cerebrospinal fluid collected after intravenous administration of 2 g cefepime in patients with meningitis was demonstrated.  相似文献   

2.
Yeh HH  Yang YH  Chen SH 《Electrophoresis》2006,27(4):819-826
A simple MEKC with UV detection at 254 nm for analysis of acyclovir in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of acyclovir from biological matrix was performed at 25 degrees C using a BGE consisting of Tris buffer with SDS as the electrolyte solution. Several parameters affecting the separation of the drug from biological matrix were studied, including the pH and concentrations of the Tris buffer and SDS. Using dyphylline as an internal standard, the linear ranges of the method for the determination of acyclovir in plasma and in CSF all exceeded the range of 2-50 microg/mL; the detection limit of the drug in plasma and in CSF (S/N = 3; injection 3.45 kPa, 5 s) was 1.0 microg/mL. The applicability of the proposed method for determination of acyclovir in plasma and CSF collected at 8 h after intravenous administration of 500 mg acyclovir (Zovirax) in two patients with herpes simplex encephalitis was demonstrated.  相似文献   

3.
Yang YH  Wu WY  Yeh HH  Chen SH 《Electrophoresis》2007,28(11):1788-1797
A simple MEKC with UV detection at 214 nm for simultaneous analysis of cefepime and vancomycin in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of cefepime and vancomycin from biological matrices was performed at 25 degrees C using a BGE consisting of a Tris buffer with SDS and methanol as the electrolyte solution. Under optimal MEKC conditions for biological samples, good separations with high efficiency and short analysis time are achieved. Several parameters affecting the separation of the drugs from biological matrices were studied, including methanol, pH, and concentrations of the Tris buffer and SDS. The linear ranges of the method for the determination of cefepime and vancomycin in plasma and in CSF using imidazole or cefazolin as an internal standard, respectively, were all over the range of 1-30 microg/mL; the detection limits of cefepime and vancomycin in biological matrices (injection 10 kV, 15 s) were 0.3 and 0.5 microg/mL, respectively. The applicability of the proposed method for the determination of cefepime and vancomycin in plasma and CSF collected after intravenous administration of the drugs in patients with meningitis was demonstrated.  相似文献   

4.
Yeh HH  Yang YH  Chou YW  Ko JY  Chou CA  Chen SH 《Electrophoresis》2005,26(4-5):927-934
A simple micellar electrokinetic chromatography (MEKC) with UV detection at 254 nm for analysis of ceftazidime in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of ceftazidime from biological matrix was performed at 25 degrees C using a background electrolyte consisting of Tris buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Under optimal MEKC condition, good separation with high efficiency and short analyses time is achieved. Several parameters affecting the separation of the drug from biological matrix were studied, including pH and concentration of the Tris buffer and SDS. Using cefazolin as an internal standard (IS), the linear ranges of the method for the determination of ceftazidime in plasma and in CSF were all over the range of 3-90 microg/mL; the detection limit of the drug in plasma and in CSF (signal-to-noise ratio = 3; injection 0.5 psi, 5 s) was 2.0 microg/mL. The applicability of the proposed method for determination of ceftazidime in plasma and CSF collected after intravenous administration of 2 g ceftazidime in patients with meningitis was demonstrated.  相似文献   

5.
A simple micellar electrokinetic chromatography (MEKC) method with UV detection at 200 nm for analysis of piracetam in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of piracetam from biological matrix was performed at 25 degrees C using a background electrolyte consisting of Tris buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Several parameters affecting the separation of the drug from biological matrix were studied, including the pH and concentrations of the Tris buffer and SDS. Under optimal MEKC condition, good separation with high efficiency and short analyses time is achieved. Using imidazole as an internal standard (IS), the linear ranges of the method for the determination of piracetam in plasma and in CSF were all between 5 and 500 microg/mL; the detection limit of the drug in plasma and in CSF (signal-to-noise ratio=3; injection 0.5 psi, 5s) was 1.0 microg/mL. The applicability of the proposed method for determination of piracetam in plasma and CSF collected after intravenous administration of 3g piracetam every 6h and oral administration 1.2g every 6h in encephalopathy patients with aphasia was demonstrated.  相似文献   

6.
A simple micellar electrokinetic chromatographic method is described for simultaneous determination of digoxin and digitoxin. The simultaneous analysis of digoxin and digitoxin was performed in Tris buffer (10 mM; pH 9) with 90 mM sodium dodecyl sulfate and 10% isopropyl alcohol as an anionic surfactant and organic modifier. Under these conditions, good separation with high efficiency is achieved in short analysis times. Several parameters affecting the separation of the drugs were studied, including the pH and concentrations of the Tris buffer and sodium dodecyl sulfate. The linear range of the method for the determination of digoxin and digitoxin was over 0.01–0.3 mg/mL; the detection limit (signal to noise ratio = 3; injection 3.5 kPa 3 s) was 4 and 6 μg/mL, respectively. Application of the proposed method to the determination of digoxin in commercial tablets and in injections proved to be feasible.  相似文献   

7.
A simple and selective CE using surfactant with UV detection is described for the simultaneous determination of selective cyclooxygenase-2 inhibitors, celecoxib, meloxicam, and rofecoxib. The simultaneous analysis of celecoxib, meloxicam, and rofecoxib was performed in Tris buffer (10 mM; pH 11) with 60 mM sodium octane-sulfonate and 20% ACN as an anionic surfactant and organic modifier, respectively. Under this condition, good separation with high efficiency and the required short analysis time is achieved. The linear ranges of the method for the determination of celecoxib, meloxicam, and rofecoxib were over 5-100 microg/mL; the detection limits at 200 nm (S/N = 3; injection 3.45 kPa, 5 s) were 2, 1, and 1 microg/mL, respectively. The small amount of sample required and the expeditiousness of the procedure allow content uniformity to be determined in individual pharmaceutical products.  相似文献   

8.
Yeh HH  Lin SJ  Ko JY  Chou CA  Chen SH 《Electrophoresis》2005,26(4-5):947-953
A simple and selective micellar electrokinetic chromatography (MEKC) with UV detection is described for simultaneous determination of amikacin, tobramycin, and kanamycin A, performed in Tris buffer (180 mM; pH 9.1) with 300 mM sodium pentanesulfonate (SPS) as an anionic surfactant. Under this condition, good separation with high efficiency and the required short analysis time is achieved. The linear ranges of the method for the determination of amikacin, tobramycin, and kanamycin A were 0.1-0.5 mg / mL, 0.4-2.0 mg / mL, and 0.4-2.0 mg / mL, respectively; the detection limits (signal-to-noise ratio = 3; injection, 0.5 psi 5 s) were 0.08, 0.2, and 0.2 mg / mL, respectively. The small amount of sample required and the expeditiousness of the procedure allow content uniformity to be determined in individual commercial products.  相似文献   

9.
A simple and sensitive micellar electrokinetic capillary chromatography (MEKC) method was developed for the separation and determination of six flavonoids in Epimedium brevicornum Maxim. Field-enhanced sample injection with reverse migrating micelles (FESI-RMM) was used for on-line concentration of the flavonoids. An electrolyte containing 20 mM H3PO4, 100 mM SDS, 20% acetonitrile and 2% 2-propanol (pH 2.0) was chosen as the electrophoretic buffer. By optimizing the stacking conditions, about 40-360-fold improvement in the detection sensitivity was obtained for the flavonoids.  相似文献   

10.
Li W  Chen Z  Liao Y  Liu H 《Electrophoresis》2006,27(4):837-841
In this study, a rapid MEKC method using 40 mM sodium borate buffer containing 50 mM SDS as surfactant was developed for the analysis of aristolochic acid (AA) in Aristolochia plants. Baseline separation of AA-I and AA-II was achieved within 3 min with high separation efficiency, satisfactory sensitivity, repeatability, and recovery. Resolution between AA-I and AA-II is above 5 and great performance with higher than 200,000 theoretical plate numbers was obtained. The detection limits (based on 3 S/N) were both 1.0 microg/mL. Two kinds of AA in 35 herbal samples of Aristolochia plants were successfully determined. The competition mechanism between beta-CD and SDS was also investigated by changing the content ratio of beta-CD and SDS.  相似文献   

11.
邵景玲 《分析测试学报》2016,35(11):1491-1495
采用准静态扫集胶束电动毛细管色谱(MEKC)法测定了扇贝样品中的2种贝类毒素。毛细管内首先充满含十二烷基硫酸钠(SDS)的缓冲溶液,调节缓冲溶液的pH值,使电渗流等于SDS胶束的电泳流速,电动进样时,带正电荷的贝类毒素离子被SDS扫集吸附,由于SDS在毛细管内处于准静止状态,可使进样时间延长至320 s。与常规电动进样MEKC相比,石房蛤毒素和软骨藻酸的检测灵敏度分别提高950和810倍。该方法对石房蛤毒素和软骨藻酸的检出限分别为0.05,0.12 ng/m L。方法可实现对扇贝样品中2种贝类毒素的快速、灵敏检测。  相似文献   

12.
Dietary supplements are growing in popularity as a source of catechins such as epigallocatechin gallate (EGCG). The first determination of five catechins in green tea extract dietary supplements using an extraction followed by micellar electrokinetic chromatography (MEKC) with UV detection is presented here. The optimum run buffer is 5 mM borate-60 mM phosphate with 50 mM SDS at pH 7.00 with detection at 210 nm. The limit of detection is 2-3 microg/mL (S/N=3) and the limit of quantitation is 6-8 microg/mL (S/N = 10). Results indicate that the amount of catechins varies greatly among manufacturers, between capsules of the same manufacturers, and between batches.  相似文献   

13.
Han F  He YZ  Yu CZ 《Talanta》2008,74(5):1371-1377
A convenient and automated method for on-line pretreatment and determination of three parabens (i.e. methyl, ethyl and propyl p-hydroxybenzoate) in cosmetic products is proposed by using flow injection analysis (FIA), solid-phase extraction (SPE) and micellar electrokinetic chromatography (MEKC). An improved split–flow interface is used to couple SPE on C8-bonded silica with MEKC separation, which can avoid running buffer contamination and reduce buffer consumption, especially, containing expensive reagents. The analytes are loaded onto a C8 column at 0.6 mL/min for 60 s and eluted with a mixed eluent of 40% (v/v) 10 mmol/L sodium tetraborate buffer (pH 9.3) and 60% (v/v) ethanol at 0.75 mL/min. The MEKC separation is accomplished with a running buffer of 20 mmol/L sodium tetraborate (pH 9.3) containing 100 mmol/L sodium dodecyl sulfate (SDS) at 15 kV. For butyl p-hydroxybenzoate did not be detected in the cosmetic products, it was used as an internal standard (IS) added into the real samples. This FIA–SPE–MEKC method using IS allows the sample separation within 12 min and the sample throughput of five samples per hour with the relative standard deviation (R.S.D.) less than 2.3% (n = 5). The limits of detection (LOD) are in the range from 0.07 to 0.1 μg/mL (S/N = 3 and n = 11). The proposed method has been used to determine three parabens in real cosmetic products satisfactorily.  相似文献   

14.
A sensitive micellar electrokinetic chromatography (MEKC) method was developed for the separation and determination of four closely related lantibiotics: gallidermin, cinnamycin, duramycin and nisin. Factors affecting the separation of the lantibiotics such as pH, phosphate buffer concentration, SDS concentration and wavelength for UV detection were investigated. By optimizing these experimental conditions, successful separation was achieved between class 1A lantibiotics (nisin and gallidermin) and class 1B lantibiotics (duramycin and cinnamycin). The four lantibiotics were separated within 12 min in 50 mM phosphate buffer at pH 3.95 ± 0.1 containing 80 mM SDS with UV detection of 214 nm. The LOD (S/N = 3) were 61 ng/mL for gallidermin, 57 ng/mL for cinnamycin, 55 ng/mL for duramycin and 58 ng/mL for nisin. The method was successfully applied to real samples such as fermentation broth, bovine colostrum and predrop beer. This method yielded satisfactory results, with quantitative recoveries of spiked lantibiotics in the three samples ranging from 86.1 to 99.6%.  相似文献   

15.
A stability‐indicating MEKC method was developed and validated for the simultaneous determination of aliskiren (ALI) and hydrochlorothiazide (HCTZ) in pharmaceutical formulations using ranitidine as an internal standard (IS). Optimal conditions for the separation of ALI, HCTZ and its major impurity chlorothiazide (CTZ), IS and degradation products were investigated. The method employed 47 mM Tris buffer and 47 mM anionic detergent SDS solution at pH 10.2 as the background electrolyte. MEKC method was performed on a fused‐silica capillary (40 cm) at 28°C. Applied voltage was 26 kV (positive polarity) and photodiode array (PDA) detector was set at 217 nm. The method was validated in accordance with the ICH requirements. The method was linear over the concentration range of 5–100 and 60–1200 μg/mL for HCTZ and ALI, respectively (r2>0.9997). The stability‐indicating capability of the method was established by enforced degradation studies combined with peak purity assessment using the PDA detection. Precision and accuracy evaluated by RSD were lower than 2%. The method proved to be robust by a fractional factorial design evaluation. The proposed MEKC method was successfully applied for the quantitative analysis of ALI and HCTZ both individually and in a combined dosage tablet formulation to support the quality control.  相似文献   

16.
The current work presents analytical procedures for simultaneous determination of tarabine PFS and adriblastina by micellar electrokinetic chromatography (MEKC) and liquid chromatography (LC). For MEKC analysis, separations and identifications were accomplished using uncoated fused-silica capillary with hydrodynamic injections in the presence of 50mM borate/phophate pH 8.7 and 100mM SDS. The migration times of tarabine PFS and adriblastina were found to be 2.70 and 6.40min, respectively. Calibration curves were established for 10-300ng/mL (r=0.998) tarabine PFS and for 8-120microg/mL (r=0.999) adriblastina. For LC analysis, separations were performed on teicoplanin stationary phase with reversed mobile phase containing methanol:buffer pH 4.05 (20:80%, v/v) at 285nm. The retention times of tarabine PFS and adriblastina were 5.18 and 7.20min, respectively. Calibration curves were established for 3-90microg/mL (r=0.998) tarabine PFS and for 10-120microg/mL (r=0.999) adriblastina. Both MEKC and LC methods were applied for the simultaneous determination of analytes in urine samples.  相似文献   

17.
A micellar electrokinetic chromatography (MEKC) method was validated for the analysis of ezetimibe. The method was carried out on a fused-silica capillary (50 microm i.d.; effective length, 40 cm). The background electrolyte consisted of a 25 mM borate buffer and 25 mM anionic detergent SDS (pH 9.75)/methanol (90:10, v/v). The capillary temperature was maintained at 35 degrees C, the applied voltage was 30 kV; the injection was performed using a pressure mode at 50 mbar for 5 s, with detection at 232 nm. The method was linear in the range of 2-150 microg/mL (R2=0.9999). The specificity and the stability-indicating capability were proven through degradation studies, which also showed that there was no interference of the excipients. The limits of quantitation and detection were 2 and 0.41 microg/mL, respectively. The method was applied for the analysis of ezetimibe pharmaceutical formulations, and the results were compared to those of the liquid-chromatography method.  相似文献   

18.
Micellar electrokinetic capillary chromatography (MEKC) has been developed as a promising method for the determination of lignans in plant samples. The separation conditions have been optimized with respect to the different parameters including sodium dodecyl sulfate (SDS) and acetonitrile concentration, pH of the background electrolyte, separation voltage, and capillary temperature. The background electrolyte consisting of 40 mM SDS and 35% acetonitrile in 10 mM tetraborate buffer (pH 9.3) was found to be the most suitable electrolyte for this analysis. The applied voltage of 28 kV (positive polarity) and the capillary temperature 25 degrees C gave the best separation of lignans. The interday reproducibility of the peak areas and the migration times was below 2.0%. The results of MEKC analyses were compared with those obtained by capillary electrochromatography (CEC) and reversed-phase high-performance liquid chromatography (RP-HPLC). The possibilities of using this method for the determination of lignans in drug and in serum samples were also tested.  相似文献   

19.
The simultaneous determination of Tarabine PFS and Adriblastine by two independent techniques, viz. micellar electrokinetic chromatography (MEKC) and high performance liquid chromatography (HPLC), has been studied. For MEKC analysis, separations and identifications were accomplished using uncoated fused-silica capillaries and injections were performed in the hydrodynamic mode. The running buffer consisted of 0.05 M borate/phosphate pH 8.70, with 0.10 M SDS at an operating voltage of 15.0 kV and the temperature held at 25.0 degrees C. Under these conditions, the migration times of Tarabine PFS and Adriblastine were 2.70 and 6.40 min, respectively. Calibration curves were established for 0.010-0.300 microg/mL (r = 0.99) Tarabine PFS and 8.000-120.0 microg/mL (r = 0.99) Adriblastine. The limit of detection (LOD) was estimated and found to be 0.003 and 3.000 microg/mL of Tarabine PFS and Adriblastine, respectively. The limit of quantitation (LOQ) was found to be 0.009 and 8.000 microg/mL of Tarabine PFS and Adriblastine, respectively. For HPLC analysis, separations and determinations were performed on teicoplanin stationary phase with reversed mobile phase containing methanol:buffer pH 4.05 (20.0:80.0%, v/v) at 285 nm. Calibration curves were established for 3.000-90.00 microg/mL (r = 0.99) Tarabine PFS and for 10.00-120.0 microg/mL (r = 0.99) Adriblastine. LOD and LOQ were estimated and found to be 0.950 and 2.050 microg/mL of Tarabine PFS and 3.130 and 9.250 microg/mL of Adriblastine, respectively. Both MEKC and HPLC methods were applied for the simultaneous determination of analytes in urine samples. It was found that 8.00-10.0% (Tarabine PFS) and 13.0-15.0% (Adriblastine) of the injected dose was recovered in urine samples with 99.5-102% recovery.  相似文献   

20.
An analytical method has been developed for the separation of glyoxal (Go), methylglyoxal (MGo), and dimethylglyoxal (DMGo) by MEKC using stilbenediamine (SD) as derivatizing reagent, separation time 6.5 min, SDS as micellar medium at pH 8, and sodium tetraborate (0.1 M) as buffer. Uncoated fused-silica capillary, effective length 50 cm x 75 microm id; applied voltage 20 kV and photodiode array detection, were used. Calibration was linear within 0.02-150 microg/mL with detection limits 3.5-5.8 ng/mL. Go and MGo, observed for diabetic and healthy volunteers, were within 0.098-0.193 microg/mL Go and 0.106-0.245 microg/mL MGo with RSD 1.6-3.5 and 1.7-3.4%, respectively, in diabetics against 0.016-0.046 microg/mL Go and 0.021-0.066 microg/mL MGo with RSDs 1.5-3.5 and 1.4-3.6%, respectively, in healthy volunteers. Go and MGo in diabetics were also measured by standard addition and DMGo as an internal standard. Additives do not contribute significantly to Go and MGo matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号