首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the hydrolysis of fenuron by hydrochloric acid in aqueous methanol solution was studied spectrophotometrically. The influence of cationic micelles of cetyltrimethylammonium bromide and anionic micelles of sodium lauryl sulfate on the rate of hydrolysis of fenuron have also been studied. The anionic micelles increased the rate of reaction, while the cationic micelles decreased the rate of hydrolysis. The reaction followed first-order kinetics in [fenuron]. The rate of reaction was increased with increase in [HCl] in lower range, but become constant at higher concentration in aqueous and micellar pseudophases. The reaction starts with the protonation of amino group of fenuron followed by rate-determining attack of water. The results in micellar media are accounted for on the basis of distribution of substrate into micellar and aqueous pseudophases.  相似文献   

2.
The rate of electron transfer from organic sulfides to [CrV(ehba)2] (ehba-2-ethyl-2-hydroxy butyric acid) decreases with a decrease in the polarity of the medium. The anionic surfactant, SDS and the cationic surfactant, CTAB have different effects on the kinetics of this reaction. The micellar inhibition observed in the presence of SDS is probably due to the decrease in the polarity and the electrostatic repulsion faced by the anionic oxidant from the anionic micelle and the partition of the hydrophobic substrate between the aqueous and micellar phases. The micellar catalysis in the presence of CTAB is attributed to the increase in the concentration of both reactants in the micellar phase. This micellar catalysis is observed to offset the retarding effects of the less polar micellar medium and the unfavorable charge-charge interaction between the + charge developed on S center in the transition state and the cationic micelle. This catalysis is contrary to the enormous micellar inhibition observed with IO4, HSO5 and HCO4 oxidation of organic sulfides.  相似文献   

3.
The stopped-flow technique has been used to study the effect of cationic (CTAN), nonionic (Triton X-100), andanionic (SDS) micelles on the rate of the reaction between nickel(II) ion and the ligand pyridine-2-azo-p-dimethylaniline (PADA) at 20.0°C and ionic strength 0.03 mol dm?3. The complex formation reaction is markedly inhibited by both CTAN and Triton X-100 micelles. The kinetic dataare found to conform to a reaction mechanism which implies only partitioning of the ligand between water and the micellar phase, the estimated bindingconstant of PADA being significantly larger in the presence of CTAN aggregates. Anionic micelles strongly speed the complexation reaction, Which occurs in the micellar phase with the same rate and the same mechanism as in water. The extent of binding of PADA to anionic micelles is similar to that found for the cationic micellar aggregates.  相似文献   

4.
The oxidative degradation of d-xylose by cerium(IV) has been found to be slow in acidic aqueous solution with the evidence of autocatalysis. The reaction is accelerated in the cetyltrimethylammonium bromide (CTAB) micellar medium but sodium dodecyl sulfate (an anionic surfactant) has no effect. The pseudo first-order rate constants have been determined at different [reductant], [oxidant], [H2SO4], temperature, and [CTAB]. The reaction rate increased with increasing [d-xylose] and decreased with increase in [H2SO4]. The CTAB-micelle-catalyzed kinetic results can be interpreted by the pseudophase model. The kinetic parameters such as association constant (K s), micellar medium rate constant (k m), and activation parameters (E a, ΔH # and ΔS #) are evaluated and the reaction mechanism is proposed. The reaction rate is inhibited by electrolytes and the results provide an evidence for the exclusion of the reactive species from the reaction site.  相似文献   

5.
The reaction Fe(CN)5(4‐CNpy)3− + S2O82− (4‐CNpy=4‐cyanopyridine) was studied in aqueous salt solutions in the presence of several electrolytes as well as in anionic, cationic, and nonionic surfactant solutions. In aqueous salt solutions the noncoulombic interactions seem to be important in determining the positive salt effects observed. The salting effects are influencing the activity coefficients of any participant in the reaction, including those ion pairs which can be formed between the anionic reagents and the cations which come from the added salts. The changes in surfactant concentration in anionic and nonionic surfactant solutions do not affect the reaction rate, which is similar to that in pure water at the same ionic strength. In cationic micellar solutions an increase in the rate constant compared to that in pure water is found; the reaction rate decreasing when the surfactant concentration increases. The kinetic trends can be explained assuming that the reagents are totally bound to the micelles and, therefore, an increase in the surfactant concentration results in a decrease in the reagent concentrations at the micellar phase and thus in a decrease in the observed rate constant. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet: 31: 229–235, 1999  相似文献   

6.
The effect of micelles of different surfactants (cationic, anionic, and neutral) on the kinetics of the glucose oxidase-catalyzed reduction of ferrocenium cations RFc+ (R=H, Bun) byd-glucose was studied by spectrophotometry. In micellar media of Triton X-100 and sodium dodecyl sulfate (SDS), the Michaelis dependence of the reaction rate on the HFc+ concentration is observed, while this dependence has an extreme character in cationic micelles of cetyltrimethylammonium bromide (CTAB). The nature and concentration of surfactants of all types have a slight effect on the rate of reduction of HFc+. The level of enzymatic activity is approximately equal in the case of Triton X-100 and CTAB and is considerably lower in the SDS micelles. On going from HFc+ to BunFc+, the reaction rate is maximum in the cationic CTAB micelles, the anionic SDS micelles exhibit almost no activity, and the activity has an intermediate value in neutral micelles of Triton X-100. The conditions are presented under which the micellar medium controls the catalytic activity of glucose oxidase with respect to ferrocenium cations. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1795–1801, October, 1997.  相似文献   

7.
The kinetics of micellar catalyzed hydrolysis of mono-2,3-dichloroaniline phosphate in the presence of different surfactants has been studied at 303?K. The rate of reaction has been found to be first order with respect to both [substrate] and [HCl]. The cationic micelles of cetylpyridinium chloride (CPC), anionic micelles of di-octyl sodium sulphosuccinate (AOT), and non-ionic micelles of polyoxyethylene sorbitan monooleate (Tween 80) enhanced the rate of reaction to a maximum value and after that the increase in concentration of surfactant decreased the reaction rate. The applicability of different kinetic models has been tested to explain the observed micellar effects. The various thermodynamic activation parameters (Ea, ΔH, ΔS, ΔG) have been evaluated. The added salts viz. KCl, KNO3, K2SO4 enhanced the rate of reaction in the presence of CPC, AOT, and Tween 80 micelles. The kinetic parameters were determined from the rate (surfactant) profile and a suitable mechanism consistent with the experimental finding has been proposed.  相似文献   

8.
Kinetics of D-mannose oxidation by cerium (IV) was studied in a sulfuric acid medium at 40°C both in absence and presence of ionic micelles. In both cases, the rate of the reaction was first-order in D-mannose and cerium (IV), which decreased with increasing [H2SO4]. This suggested that the redox reaction followed the same mechanism. The reaction proceeded through formation of an intermediate complex, which was proved by kinetic method. The complex underwent slow unimolecular decomposition to a free radical that reacted with cerium (IV) to afford the product. The catalytic role of cationic cetyltrimethylammonium bromide (CTAB) micelles was best explained by the Menger-Portnoy model. The study of the effect of CTAB also indicated that a negatively charged species was the reactive form of cerium (IV). From the kinetic data, micelle-cerium (IV) binding and rate constants in micellar medium were evaluated. The anionic micelle of sodium dodecyl sulfate plays no catalytic role. The oxidation has the rate expression: -d[Ce(IV)]=k1Kc1[D-mannose][Ce(IV)]dt Different activation parameters for micelle catalyzed and uncatalyzed paths were also calculated and discussed.  相似文献   

9.
Kinetics of D-mannose oxidation by cerium (IV) was studied in a sulfuric acid medium at 40℃ both in absence and presence of ionic micelles. In both cases, the rate of the reaction was first-order in D-mannose and in cerium(Ⅳ), which decreased with increasing [H2SO4]. This suggested that the redox reaction followed the same mechanism. The reaction proceeded through formation of an intermediate complex, which was proved by kinetic method. The complex underwent slow unimolecular decomposition to a free radical that reacted with cerium (Ⅳ) to afford the product. The catalytic role of cationic cetyltrimethylammonium bromide (CTAB) micelles was best explained by the Menger-Portnoy model. The study of the effect of CTAB also indicated that a negatively charged species was reactive form of cerium (Ⅳ). From the kinetic data, micelle-cerium (Ⅳ) binding and rate constants in micellar medium were evaluated.The anionic micelle of sodium dodecyl sulfate plays no catalytic role. The oxidation has the rate expression --d[Ce(Ⅳ)]= k1Kcl[D-mannose] [Ce(Ⅳ)]dt Different activation parameters for micelle catalyzed and uncatalyzed paths were also calculated and discussed.  相似文献   

10.
The kinetics and mechanism of chromic acid oxidation of L‐sorbose in the presence and absence of picolinic acid (PA) have been studied under the conditions, [L‐sorbose]T » [PA]T » [Cr(VI)]T, at different temperatures. In the absence of PA, the monomeric chromic acid undergoes esterification with the substrate followed by the acid catalysed redox decomposition of the Cr(VI)‐substrate ester through glycol splitting to formaldehyde and the lactone of C5‐aldonic acid and Cr(IV) which subsequently participates in the faster reactions. In the presence of PA, the Cr(VI)‐PA complex produced in a pre‐equilibrium step experiences a nucleophilic attack by the substrate to produce a ternary complex which decomposes through glycol splitting giving rise to the organic products and Cr(IV)‐PA complex. Both the uncatalysed and PA‐catalysed paths show the first‐order dependence on [L‐sorbose]T and [Cr(VI)]T. The PA‐catalysed path is first‐order in [PA]T and it shows a fractional order in [H+]. The uncatalysed path shows a second‐order dependence on [H+]. In the presence of the surfactants like N‐cetylpyridinium chloride (CPC, a cationic surfactant) and sodium dodecyl sulfate (SDS, an anionic sulfate), the reaction orders remain unchanged. CPC has been found to inhibit both the uncatalysed and PA‐catalysed paths while SDS shows the rate accelerating effect for both the uncatalysed and PA‐catalysed paths. The observed micellar effects have been rationalised by considering the distribution of the reactants between the micellar and aqueous phases in terms of the proposed reaction mechanism.  相似文献   

11.
The spontaneous hydrolysis of phenyl chloroformate was studied in various anionic, nonionic, zwitterionic, and cationic aqueous micellar solutions, as well as in mixed anionic–nonionic micellar solutions. In all cases, an increase in the surfactant concentration results in a decrease in the reaction rate and micellar effects were quantitatively explained in terms of distribution of the substrate between water and micelles and the first‐order rate constants in the aqueous and micellar pseudophases. A comparison of the kinetic data in nonionic micellar solutions to those in anionic and zwiterionic micellar solutions makes clear that charge effects of micelles is not the only factor responsible for the variations in the reaction rate. Depletion of water in the interfacial region and its different characteristics as compared to bulk water, the presence of high ionic concentration in the Stern layer of ionic micelles, and differences in the stabilization of the initial state and the transition state by hydrophobic interactions with surfactant tails can also influence reactivity. The different deceleration of the reaction observed in the various micellar solutions studied was discussed by considering these factors. Synergism in mixed‐micellar solutions is shown through the kinetic data obtained in these media. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 445–451, 2002  相似文献   

12.
A new method, based upon semi-empirical kinetic approach, for the determination of ion exchange constant for ion exchange processes occurring between counterions at the cationic micellar surface is described in this review article. Basically, the method involves a reaction kinetic probe which gives observed pseudo-first-order rate constants (kobs) for a nucleophilic substitution reaction between the nonionic and anionic reactants (R and S) in the presence of a constant concentration of both reactants as well as cationic micelles and varying concentrations of an inert inorganic or organic salt (MX). The observed data (kobs, versus [MX]) fit satisfactorily (in terms of residual errors) to an empirical equation which could be derived from an equation explaining the mechanism of the reaction of the kinetic probe in terms of pseudophase micellar (PM) model coupled with another empirical equation. This (another) empirical equation explains the effect of [MX] on cationic micellar binding constant (KS) of the anionic reactant (say S) and gives an empirical constant, KX/S. The magnitude of KX/S is the measure of the ability of X to expel S from a cationic micellar pseudophase to the bulk aqueous phase through ion exchange X/S. The values of KX/S and KY/S (where Y is another inert counterion) give the ion exchange constant, KXY (= KX/KY where KX and KY represent cationic micellar binding constants of X and Y, respectively). The suitability of this method is demonstrated by the use of three different reaction kinetic probes and various MX.  相似文献   

13.
The kinetics and mechanism of the formation of silver nanoparticles by reduction of Ag+ with maltose were studied spectrophotometrically by monitoring the absorbance change at 412 nm in aqueous and micellar media at a temperature range 45–60 °C. The reaction was carried out under pseudo-first-order conditions by taking the [maltose] (>tenfold) the [Ag+]. A mechanism of the reaction between silver ion and maltose is proposed, and the rate equation derived from the mechanism was consistent with the experimental rate law. The effect of surfactants, namely cetyltrimethylammonium bromide (CTAB, a cationic surfactant) and sodium dodecyl sulfate (SDS, an anionic surfactant), on the reaction rate has been studied. The enthalpy and the entropy of the activation were calculated using the transition state theory equation. The particle size of silver sols was characterized by transmission electron microscopy and some physiochemical and spectroscopic tools.  相似文献   

14.
Kinetics of oxidation of L-ascorbic acid (H2A) by sodium perborate (SPB) and peroxy disulphate (PDS) have been investigated in aqueous acid and micellar media. Reaction kinetics indicated first-order dependence on both |oxidant| and |H2A|. Increase in ionic strength (μ) increased reaction rate only in H2SO4 media. Rate of SPB oxidation of H2A has been accelerated by acidity in HNO3 and HCl media while a decreasing trend is observed in HClO4 and H2SO4 media. The results are interpreted by various theories of acidity functions. Reaction rate is enhanced by the addition of added |H2O2| indicating a H2O2 coordinated boron species to be active in the present system. In the absence of micelle, increase in |acid| altered the PDS(SINGLEBOND)H2A reaction rate marginally (a very small positive effect with HClO4 and negative effect with H2SO4). Most plausible mechanisms have been proposed on the basis of experimental results. Activation parameters evaluated for specific kinetic constants are in accord with outer sphere electron transfer mechanism. In SPB(SINGLEBOND)H2A system, addition of anionic micelle (Sodium lauryl sulfate) increased the rate, stabilizing the cationic species in the transition state in all the acid media. Although rate of PDS oxidation of H2A was catalyzed by TX and inhibited by SDS at critical micellar concentration (CMC) increase in |acid| (both HClO4 and H2SO4) beyond 9.6 × 10−4 M decreased the rate of oxidation. This trend was explained due to the repulsive interaction of coanion, HA, and negatively charged micellar species. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The reduction of three aromatic ketones, acetophenone (AF), 4-methoxyacetophenone (MAF), and 3-chloroacetophenone (CAF), by NaBH(4) was followed by UV-vis spectroscopy in reverse micellar systems of water/AOT/isooctane at 25.0 degrees C (AOT is sodium 1,4-bis-2-ethylhexylsulfosuccinate). The first-order rate constants, k(obs), increase with the concentration of surfactant due to the substrate incorporation at the reverse micelle interface, where the reaction occurs. For all the ketones the reactivity is lower at the micellar interface than in water, probably reflecting the low affinity of the anionic interface for BH(4)(-). Kinetic profiles upon water addition show maxima in k(obs) at W(0) approximately 5 probably reflecting a strong interaction between water and the ionic headgroup of AOT; at W(0) < 5 by increasing W(0) BH(4)(-) is repelled from the anionic interface once the water pool forms. The order of reactivity was CAF > AF > MAF. Application of a kinetic model based on the pseudophase formalism, which considers distribution of the ketones between the continuous medium and the interface, and assumes that reaction take place only at the interface, gives values of the rate constants at the interface of the reverse micellar system. At W(0) = 5, we conclude that NaBH(4) is wholly at the interface, and at W(0) = 10 and 15, where there are free water molecules, the partitioning between the interface and the water pool has to be considered. The results were used to estimate the ketone and borohydride distribution constants between the different pseudophases as well as the second-order reaction rate constant at the micellar interface.  相似文献   

16.
The kinetics of the photolysis of substituted 1,2-dihydroquinolines (DHQ) in micellar solutions was studied by steady-state and flash photolysis. The photolysis mechanism depends dramatically on the location of DHQ molecules in micelles, which is governed by the surfactant nature. In micellar solutions of the anionic surfactant sodium dodecyl sulfate (SDS), where the DHQ molecules are located in the Stern layer, the intermediate species decay kinetics follows a first-order law. When DHQ is in neutral form (pH 4–12), the rate constant of the intermediate carbocation decay increases from 25 to 198 s?1 with an increasing concentration of DHQ in micelles. The positive micellar catalysis is caused by the acceleration of the final product formation with the DHQ molecule via proton abstraction from the intermediate cation. The formation of several types of intermediate species—carbocations in the aqueous phase and aminyl radicals in micelles—is observed in micellar solutions of the cationic surfactant cetyltrimethylammonium bromide (CTAB) due to the preferential location of DHQ molecules in the micellar core. The carbocation decays via a pseudofirst-order reaction with a rate constant close to that in the aqueous solution. The lifetime of the DHQ aminyl radicals in the micellar solutions is longer by several orders of magnitude than the lifetime observed for homogeneous solutions of hydrocarbons and alcohols.  相似文献   

17.
The influence of surfactants (anionic and cationic) on the reactivity of the redox couple cerium(IV) and D-glucose was examined spectrophotometerically. Various kinetic parameters have been determined in the absence and presence of surfactants. The kinetics were followed by monitoring the disappearance of the absorbance of cerium(IV) at 385 nm. The reaction obeyed first-order kinetics with respect to [D-glucose] in both media. No effect of anionic micelles of sodium dodecyl sulfate (SDS) was observed due to electrostatic repulsion between the negative head group of SDS and reactive species of cerium(IV) (Ce(SO4) 3 2− ). A twofold increase in the oxidation rate was observed in the presence of cationic micelles of cetyltrimethylammonium bromide (CTAB). The observed catalytic role has been analyzed in terms of the Menger–Portnoy model. The effects of various inorganic salts (Na2SO4, NaNO3 and NaCl) were also studied in micellar media.  相似文献   

18.
Cationic micelles of alkyltrimethylammonium chloride and bromide (alkyl = n? C12H25, n? C14H29, and n? C16H33) catalyze and anionic micelles of sodium dodecyl sulfate inhibit the reaction of hydroxide ion with 2-phenoxyquinoxaline (1). Inert anions such as chloride, nitrate, mesylate, and n-butanosulfonate inhibit the reaction in CTABr by competing with OH? at the micellar surface. The overall micellar effects on rate in cationic micelles and dilute electrolyte can be treated quantitatively in terms of the pseudo-phase ion-exchange model. The determined second-order rate constants in the micellar pseudo-phase are smaller than the second-order constants in water. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Abstract— Zn-tetraphenylporphyrin (ZnTPP), solubilized in non-ionic surfactant micelles, was found to sensitize photoreductions of some sodium anthraquinonesulfonatesz in the presence of ascorbic acid under anaerobic conditions. The reaction rate was increased by the addition of an anionic surfactant, while retardation was observed with a cationic surfactant. The pH-reaction rate profiles showed maxima located in the order corresponding to pKa-values for the semiquinone of each anthraquinone-sulfonate. A reaction scheme involving the formation of ZnTPP+ at the primary step, followed by back-reduction with ascorbic acid, is proposed. The reaction scheme is in good agreement with the results of flash photolysis. The surfactant micelles are suggested to aid the charge-separation between the ionic species just after the redox reaction involving the photoexcited ZnTPP and anthraquinonesulfonates.  相似文献   

20.
The micellar effect of surfactants of various types on the rate of the reaction between methyl violet and hydroxide ion is studied. The absorption spectra show that the cation of methyl violet is bound by micelles of all types at proper concentrations of surfactants. The observed rate constant in micellar systems containing nonionic Brij-35, zwitterionic 3-(dimethyldodecylammonio)-propanesulfonate, cationic cetyltrimethylammonium bromide and hydroxide surfactants is higher, whereas in solutions of the anionic surfactant sodium dodecylsulfate is lower than that one in the surfactant-free system. Piszkiewicz's, Berezin's, and pseudophase ion-exchange models of the kinetic micellar effect are used for the treatment of the dependences of the above-mentioned constants on the surfactant concentration. The values of the corresponding kinetic parameters are compared and discussed. The influence of nonionic, zwitterionic, and anionic micelles on the reaction rate is discussed on the basis of medium and concentration kinetic effects. The character of the cationic micelles effect is somewhat paradoxical. Although the observed pseudo–first-order reaction rate constant substantially increases in the presence of such micelles, the second order-rate constant in these micelles is lower than the corresponding value in surfactant-free aqueous solution. As a possible explanation, the decrease in the reactivity of the HO ions is proposed, owing to their electrostatic association with the cationic headgroups (“diverting effect”).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号