首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the formation and characterization of self-assembled monolayers (SAMs) based on dialkyldithiophosphinic acid adsorbates {[CH(3)(CH(2))(n)](2)P(S)SH (n = 5, 9, 11, 13, 15)} on gold substrates. SAMs were characterized using X-ray photoelectron spectroscopy, reflection-absorption infrared spectroscopy, contact angle measurements, and electrochemical impedance spectroscopy. Data show that there is a roughly 60:40 mixture of bidentate and monodentate adsorbates in each of these SAMs. The presence of monodentate adsorbates is due to the numerous and deep grain boundaries of the underlying gold substrate, which disrupt chelation. Comparing the characterization data of dialkyldithiophosphinic acid SAMs with those of analogous n-alkanethiolate SAMs shows that both SAMs follow a similar trend: The alkyl chains become increasingly organized and crystalline with increasing alkyl chain length. The alkyl groups of dialkyldithiophosphinic acid SAMs, however, are generally less densely packed than those of n-alkanethiolate SAMs. For short alkyl chains (hexyl, decyl, and dodecyl), the significantly lower packing densities cause the alkyl chains to be liquid-like and disorganized. Long-chain dialkyldithiophosphinic acid SAMs are only slightly less crystalline than analogous n-alkanethiolate SAMs.  相似文献   

2.
Pd(ii) pincer adsorbate molecules (1) were inserted into self-assembled monolayers (SAMs) of alkanethiols with different chain lengths (C(8) to C(18)) on annealed gold substrates. Their presence was brought to expression by reaction of with Au nanoclusters bearing phosphine moieties (2). The surface-confined Au nanoclusters were observed only on the shorter chain SAMs (C(8)SH to C(16)SH) and not on C(18)SH SAMs. This is attributed to the longer chain length of C(18)SH preventing the insertion of pincer molecules. Microcontact printing (microCP) with C(18)SH on unannealed gold substrates and the subsequent immersion of the substrates into C(8)SH, C(10)SH, C(12)SH, or C(16)SH solutions, yielded a series of patterned SAMs that have areas of thiols of different chain lengths. Insertion of 1 followed by expression using 2, or insertion of 3 showed inserted molecules only in the shorter chain SAM areas. The absolute particle densities in the former case were higher than on the corresponding homogeneous SAMs on annealed substrates, probably due to larger numbers of defects in the SAMs on unannealed substrates.  相似文献   

3.
Mixed thiol self‐assembled monolayers (SAMs) presenting methyl and azobenzene head groups were prepared by chemical substitution from the original single‐component n‐decanethiol or [4‐(phenylazo)phenoxy]hexane‐1‐thiol SAMs on polycrystalline gold substrates. Static contact‐angle measurements were carried out to confirm a change in the hydrophobicity of the functionalized surfaces following the exchange reaction. The mixed SAMs presented contact‐angle values between those of the more hydrophobic n‐decanethiol and the more hydrophilic [4‐(phenylazo)phenoxy]hexane‐1‐thiol single‐component SAMs. By means of tip‐enhanced Raman spectroscopy (TERS) mapping experiments, it was possible to highlight that molecular replacement takes place easily and first at grain boundaries: for two different mixed SAM compositions, TERS point‐by‐point maps with <50 nm step sizes showed different spectral signatures in correspondence to the grain boundaries. An example of the substitution extending beyond grain boundaries and affecting flat areas of the gold surface is also shown.  相似文献   

4.
Self-assembled monolayers (SAMs) of alkanephosphonic acids with chain lengths between 8 and 18 carbon units were formed on thin films of indium tin oxide (ITO) sputter-deposited on silicon substrates with 400 nm thermally grown SiO(2). The silicon substrates, while not intended for use in near-IR or visible optics applications, do provide smooth surfaces that permit systematic engineering of grain size and surface roughness as a function of the sputter pressure. Argon sputter pressures from 4 to 20 mTorr show systematic changes in surface morphology ranging from smooth, micrometer-sized grain structures to <50 nm grains with 3× higher surface roughness. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy experiments are conducted for alkanephosphonic acids deposited on these wide range of ITO surfaces to evaluate the effects of these morphological features on monolayer ordering. Results indicate that long-chain SAMs are more highly ordered, and have a smaller tilt angle, than short-chain SAMs. Surprisingly, the 1-octadecyl phosphonic acids maintain their order as the lateral grain dimensions of the ITO surface shrink to ~50 nm. It is only when the ITO surface roughness becomes greater than the SAM chain length (~15 ?) that SAMs are observed to become relatively disordered.  相似文献   

5.
We have investigated the reaction of tetrakis(dimethylamido)titanium, Ti[N(CH(3))(2)](4), with N-isopropyl-N-[4-(thien-3-ylethynyl) phenyl] amine and N-isopropyl-N-(4-{[4-(thien-3-ylethynyl) phenyl]ethynyl}phenyl) amine self-assembled monolayers (SAMs), on polycrystalline Au substrates. The structure of the SAMs themselves has also been investigated. Both molecules form SAMs on polycrystalline Au bound by the thiophene group. The longer-molecular-backbone molecule forms a denser SAM, with molecules characterized by a smaller tilt angle. X-ray photoelectron spectroscopy (XPS) and angle-resolved XPS have been employed to examine the kinetics of adsorption, the spatial extent of reaction, and the stoichiometry of reaction. For both the SAMs, adsorption is described well by first-order Langmuirian kinetics, and adsorption is self-limiting from T(s) = -50 to 30 degrees C. The use of angle-resolved XPS clearly demonstrates that the Ti[N(CH(3))(2)](4) reacts exclusively with the isopropylamine end group via ligand exchange, and there is no penetration of the SAM, followed by reaction at the SAM-Au interface. Moreover, the SAM molecules remain bound to the Au surface via their thiopene functionalites. From XPS, we have found that, in both cases, approximately one Ti[N(CH(3))(2)](4) is adsorbed per two SAM molecules.  相似文献   

6.
An electrical junction formed by mechanical contact between two self-assembled monolayers (SAMs)--a SAM formed from an dialkyl disulfide with a covalently linked tetracyanoquinodimethane group that is supported by silver (or gold) and a SAM formed from an alkanethiolate SAM that is supported by mercury-rectifies current. The precursor to the SAM on silver (or gold) was bis(20-(2-((2,5-cyclohexadiene-1,4-diylidene)dimalonitrile))decyl)) disulfide and that for the SAM on mercury was HS(CH(2))(n-1)CH(3) (n = 14, 16, 18). The electrical properties of the junctions were characterized by current-voltage measurements. The ratio of the conductivity of the junction in the forward bias (Hg cathodic) to that in the reverse bias (Hg anodic), at a potential of 1 V, was 9 +/- 2 when the SAM on mercury was derived from HS(CH(2))(15)CH(3). The ratio of the conductivity in the forward bias to that in the reverse bias increased with decreasing chain length of the alkanethiol used to form the SAM on mercury. These results demonstrate that a single redox center asymmetrically placed in a metal-insulator-metal junction can cause the rectification of current and indicate that a fixed dipole in the insulating region of a metal-insulator-metal junction is not required for rectification.  相似文献   

7.
We report the immobilization of gold nanorods onto self-assembled monolayers (SAMs) of 16-mercaptohexadecanoic acid (16-MHA). The simple two step protocol involves formation of a SAM of 16-MHA molecules onto gold-coated glass slides and subsequent immersion of these slides into the gold nanorod solution. The nanorods, formed by a seed-mediated, surfactant-assisted synthesis protocol, are stabilized in solution due to surface modification by the surfactant cetyltrimethylammonium bromide (CTAB). Attractive electrostatic interactions between the carboxylic acid group on the SAM and the positively charged CTAB molecules are likely responsible for the nanorod immobilization. UV-vis spectroscopy has been used to follow the kinetics of the nanorod immobilization. The nature of interaction between the gold nanorods and the 16-MHA SAM has been probed by Fourier transform infrared spectroscopy (FTIR). The surface morphology of the immobilized rods is studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements. SEM was also used to determine the density of the immobilized nanorods as a function of the pH of immobilization. Control over the surface coverage of the immobilized gold nanorods has been demonstrated by simple pH variation. Such well-dispersed immobilized gold nanorods with control over the surface coverage could be interesting substrates for applications such as surface-enhanced Raman spectroscopy (SERS).  相似文献   

8.
A molecular-level approach is developed to prevent or inhibit the degradation processes of alkanethiol self-assembled monolayers (SAMs). Previous studies revealed two degradation pathways: direct desorption and oxidation-desorption. By use of scanning tunneling microscopy (STM) and atomic force microscopy (AFM), in situ and time-dependent imaging reveals and confirms that degradations of alkanethiol SAMs on gold mainly initiate at defect sites, such as domain boundaries and vacancy islands, and then propagate into the ordered domains. Our approach targets at attaching small molecules with preferred adhesion to the defects. The best candidates are aqueous media containing a small amount of amphiphilic surfactant molecules, such as N,N-dimethylformamide (DMF) or dimethyl sulfoxide (DMSO). High-resolution studies demonstrate that DMSO and DMF molecules attach to SAM surfaces and more favorably at defect sites, forming relatively stable adsorbates. This attachment increases the activation energy sufficiently to inhibit both degradation pathways. The robustness of this approach has been investigated as a function of surfactant concentration, solution temperature, and the stirring condition. Molecular-level mechanisms and energetics for degradation inhibition of SAMs are also discussed in detail.  相似文献   

9.
This article describes the design, synthesis, and study of alkoxyphenylethanethiol-based adsorbates with one (R1ArMT), two (R2ArMT), and three (R3ArMT) pendant octadecyloxy chains substituted at the 4-, 3,5-, and 3,4,5-positions, respectively, of the phenylethanethiol group. These adsorbates are being developed for use in the preparation of compositionally versatile "mixed" self-assembled monolayer (SAM) coatings. The resultant SAMs were characterized by ellipsometry, contact angle goniometry, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). The studies revealed that R1ArMT generates a well-ordered monolayer film, while R2ArMT and R3ArMT generate monolayer films with diminished conformational order in which the degree of crystallinity decreases as follows: C18 ~ R1ArMT > R3ArMT > R2ArMT. In addition, comparison of the molecular and chain packing densities of SAMs derived from these new adsorbates reveals that the R2ArMT and R3ArMT adsorbates give rise to SAMs with reduced chain tilt and smaller surface area per chain when compared to the SAMs derived from C18 and R1ArMT.  相似文献   

10.
Self-assembled monolayer (SAM) formation of alkanethiols with ionic, hydrophilic terminal functionalities onto various O(2) plasma/ethanol pretreated gold substrates was characterized to explore the effect of gold surface oxide on the SAM packing quality. Oxygen adsorption induced by the Au(2)O(3) surface residuals are observed on the plasma-oxidized and O(2) plasma/ethanol-rinsed pretreated Au surfaces while no obvious adsorbed oxygen is found on freshly coated and O(2) plasma/ethanol sonication pretreated Au substrates. A model for the formation of hydrophilic terminated SAMs, -OH, -COOH, and -PO(3)H(2) is proposed. According to this model, the ionic and/or other binding interactions between the surface Au(2)O(3) and the alkanethiol hydrophilic terminal end as well as the interactions between the terminal SAM functionalities could cause the packing disorder found on these three SAMs formed on Au substrates containing Au(2)O(3) surface species. Copyright 2001 Academic Press.  相似文献   

11.
Porphyrin-functionalized oligo(phenyleneethynylene)s (OPE) are promising molecules for molecular electronics applications. Three such molecules () with the common structure P-OPE-AG (P and AG are a porphyrin and anchor group, respectively) and different anchor groups, viz. an acetyl protected thiol, -S-COCH(3) (), an acetyl protected thiol with methylene linker, -CH(2)-S-COCH(3) (), and a trimethylsilylethynyl group, -C[triple bond, length as m-dash]C-Si(CH(3))(3) () have been synthesized and the corresponding self-assembled monolayers (SAMs) on Au(111) substrates have been prepared. The integrity and structural properties of these films were studied by X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. The results suggest that the films formed from have a high orientational order with an almost upright orientation and dense packing of the molecular constituents, i.e. represent a high quality SAM. In contrast, molecule formed disordered molecular layers on Au, even though the molecule-surface bonding (thiolate) is the same as in the case of molecule . This suggests that the methylene linker in molecule has a strong impact on the quality of the resulting film, so that a well-ordered SAM cannot be formed. The silane system, , is also able to bind to the gold surface but the resulting SAM has a poor quality, being significantly disordered and/or comprised of strongly inclined molecules. The above results suggest that the nature of the anchor group along with a possible linker is an important parameter which, to a high extent, predetermines the entire quality of OPE-based molecular layers.  相似文献   

12.
Self-assembled monolayers (SAMs) formed from 4'-substituted 4-mercaptobiphenyls X-(C6H4)2SH (X-BPT, with X = I, Cl, and F) on polycrystalline (111) gold and silver substrates have been characterized by synchrotron-based high-resolution X-ray photoelectron spectroscopy and angle-resolved near-edge X-ray absorption fine structure spectroscopy. The X-BPT molecules were found to form highly oriented and densely packed SAMs on both substrates, with a smaller molecular inclination in the case of Ag. The experimental data show clear evidence for the charge transfer between the 4'-substituent and biphenyl moieties with the direction and extent of the transfer depending on the electronegativity of the halogen substituent. At the same time, no direct evidence of the charge transfer between the 4'-substituent and the thiolate group was observed. However, the substitution of the 4'-hydrogen by a halogen atom seems to affect the detailed packing arrangements of the SAM constituents.  相似文献   

13.
This paper compares the structural and electrical characteristics of self-assembled monolayers (SAMs) of n-alkanethiolates, SCn (n = 10, 12, 14), on two types of silver substrates: one used as-deposited (AS-DEP) by an electron-beam evaporator, and one prepared using the method of template-stripping. Atomic force microscopy showed that the template-stripped (TS) silver surfaces were smoother and had larger grains than the AS-DEP surfaces, and reflectance-absorbance infrared spectroscopy showed that SAMs formed on TS substrates were more crystalline than SAMs formed on AS-DEP substrates. The range of current densities, J (A/cm2), measured through mercury-drop junctions incorporating a given SAM on AS-DEP silver was, on average, several orders of magnitude larger than the range of J measured through the same SAM on TS silver, and the AS-DEP junctions failed, on average, 3.5 times more often within five current density-voltage (J-V) scans than did TS junctions (depending on the length of the alkyl chains of the molecules in the SAM). The apparent log-normal distribution of J through the TS junctions suggests that, in these cases, it is the variability in the effective thickness of the insulating layer (the distance the electron travels between electrodes) that results in the uncertainty in J. The parameter describing the decay of current density with the thickness of the insulating layer, beta, was either 0.57 A-1 at V = +0.5 V (calculated using the log-mean of the distribution of values of J) or 0.64 A-1 (calculated using the peak of the distribution of values of J) for the TS junctions; the latter is probably the more accurate. The mechanisms of failure of the junctions, and the degree and sources of uncertainty in current density, are discussed with respect to a variety of defects that occur within Hg-drop junctions incorporating SAMs on silver.  相似文献   

14.
Here we report a facile way of stabilizing large gold nanoparticles (AuNPs) by mixed charged zwitterionic self-assembled monolayers (SAMs). The citrate-capped AuNPs with diameters ranging from 16 nm to even ~100 nm are well stabilized via a simple place exchange reaction with a 1:1 molar ratio mixture of negatively charged sodium 10-mercaptodecanesulfonic acid (HS-C10-S) and positively charged (10-mercaptodecyl)-trimethyl-ammonium bromide (HS-C10-N4). The 16 nm AuNPs protected by mixed charged zwitterionic SAMs not only show much better stability than the single negatively or positively charged AuNPs, but also exhibit exciting stability as well as those modified by monohydroxy (1-mercaptoundec-11-yl) tetraethylene glycol (HS-C11-EG4). Importantly, 16 nm AuNPs protected by mixed SAMs exhibit good stability in cell culture medium with 10% FBS and strong protein resistance, especially with excellent resistance against plasma adsorption. Moreover, the mixed charged zwitterionic SAMs are also able to well-stabilize larger AuNPs with a diameter of 50 nm, and to help remarkably improve their stability in saline solution compared with HS-C11-EG4 protected ones. When it comes to AuNPs with a diameter of 100 nm, the mixed charged zwitterionic SAM protected nanoparticles retain a smaller hydrodynamic diameter and even better long-term stability than those modified by mercaptopolyethylene glycol (M(w) = 2000, HS-PEG2000). The above results demonstrated that the mixed charged zwitterionic SAMs are able to have a similar effect on stabilizing the large gold nanoparticles just like the single-component zwitterionic SAMs. Concerning its ease of preparation, versatility, and excellent properties, the strategy based on the mixed charged zwitterionic SAM protection might provide a promising method to surface tailoring of nanoparticles for biomedical application.  相似文献   

15.
Using a molecular fluorine laser at 157 nm wavelength, submicron patterning of organosilane self-assembled monolayers (SAMs) is demonstrated utilizing mask-contact photolithography. An organosilane, namely, octadecyltrimethoxysilane [ODS, CH(3)(CH(2))(17)Si(OCH(3))(3)], SAM is chemisorbed onto Si substrates covered with a 2 nm thick oxide layer and subsequently patterned using the laser. The optical path of the laser beam and the photomask-sample space are evacuated and then backfilled and purged with nitrogen during laser firing. The resulting pattern is investigated using various measurement techniques. The scanning probe microscopy images show that patterns are transferred to the SAM-covered Si substrates and that 500 nm features are successfully photoprinted in this way.  相似文献   

16.
Snow AW  Jernigan GG  Ancona MG 《The Analyst》2011,136(23):4935-4949
Self-assembled monolayers (SAMs) of HS(CH(2))(n)COOH, n = 5, 10, 15 deposited from ethanol solution onto gold are prepared by five approaches, and their packing densities are evaluated by X-ray photoelectron spectroscopy (XPS) measurements. The five approaches are: (1) direct deposition; (2) acetic-acid-assisted deposition; (3) butyl-amine-assisted deposition; (4) displacement of a preformed HS(CH(2))(n)CH(3) (n = 5, 10, 15) SAMs; and (5) co-deposition with HS(CH(2))(n)CH(3) (n = 5, 10, 15). Packing density metrics are calculated from measurements of SAM and substrate photoemission intensities and their attenuations by two methods. In one case the attenuated photoemissions are expressed as a ratio relative to comparable measurements on an experimental HS(CH(2))(n)CH(3) model system. In the other case a new method is introduced where a calculated attenuation based on theoretical random coil and extended chain models is used as the reference to determine a packing density fraction. Packing densities are also correlated with the S2p(Au-bonded):Au4f peak area ratios and with shifts in the C1s binding energies. SAMs prepared by the direct deposition are a partial multilayer where a second molecular layer is physisorbed onto the SAM and not removable by solvent washing. The addition of acetic acid to the deposition solution disrupts dimer associations of HS(CH(2))(n)COOH in solution and at the surface of the monolayer and yields the most ordered monolayer with the highest density of -COOH groups. The addition of butyl amine results in a labile ammonium carbonate ion pair formation but results in a lower packing density in the SAM. The displacement of the preformed HS(CH(2))(n)CH(3) SAM and the co-deposition of HS(CH(2))(n)CH(3) with HS(CH(2))(n)COOH result in SAMs with little incorporation of the -COOH component.  相似文献   

17.
This paper describes physical-organic studies of charge transport by tunneling through self-assembled monolayers (SAMs), based on systematic variations of the structure of the molecules constituting the SAM. Replacing a -CH(2)CH(2)- group with a -CONH- group changes the dipole moment and polarizability of a portion of the molecule and has, in principle, the potential to change the rate of charge transport through the SAM. In practice, this substitution produces no significant change in the rate of charge transport across junctions of the structure Ag(TS)-S(CH(2))(m)X(CH(2))(n)H//Ga(2)O(3)/EGaIn (TS = template stripped, X = -CH(2)CH(2)- or -CONH-, and EGaIn = eutectic alloy of gallium and indium). Incorporation of the amide group does, however, increase the yields of working (non-shorting) junctions (when compared to n-alkanethiolates of the same length). These results suggest that synthetic schemes that combine a thiol group on one end of a molecule with a group, R, to be tested, on the other (e.g., HS~CONH~R) using an amide-based coupling provide practical routes to molecules useful in studies of molecular electronics.  相似文献   

18.
Dithiols of N-hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole (HDMC) have been synthesized and employed to form self-assembled monolayers (SAMs) on gold. One characteristic of the HDMC molecule is its peculiar molecular structure consisting of a large and rigid headgroup and a small and flexible alkyl-chain tail. HDMC adsorbates can attach to gold substrates by a strong Au-S bond with weak van der Waals interactions between the alkyl-chain tails, leading to a loosely packed hydrophobic SAM. In this way we can couple hybrid bilayer membranes (HBMs) to gold surfaces with more likeness to a cell bilayer than the conventional HBMs based on densely packed long-chain alkanethiol SAMs. The insulating properties and stability of the HDMC monolayer as well as the HDMC/lipid bilayer on gold have been investigated by electrochemical techniques including cyclic voltammetry and impedance spectroscopy. To test whether the quality of the bilayer is sufficiently high for biomimetic research, we incorporated the pore-forming protein alpha-hemolysin) and the horseradish peroxidase into the bilayers, respectively. Experimental results demonstrated that this type of loosely packed hydrophobic SAM has great potential in biomimetic bilayer research and biosensor application.  相似文献   

19.
Self-assembled monolayers (SAMs) of ferrocene-labeled α-helical peptides were prepared on gold surfaces and studied using electrochemical surface plasmon resonance (EC-SPR). The leucine-rich peptides were synthesized with a cysteine sulfhydryl group either at the C- or N-terminus, enabling their immobilization onto gold surfaces with control of the direction of the molecular dipole moment. Two electroactive SAMs were studied, one in which all of the peptide dipole moments are oriented in the same direction (SAM1), and the other in which the peptide dipole moment of one peptide is aligned in the opposite direction to that of its surrounding peptide molecules (SAM2). Cyclic voltammetry combined with SPR measurements revealed that SAM reorientations concomitant with the oxidation of the ferrocene label were more significant in SAM2 than in SAM1. The substantially greater change in the peptide film thickness in the case of SAM2 is attributed to the electrostatic repulsion between the electrogenerated ferrocinium moiety and the positively charged gold surface. The greater permeability of SAM1 to electrolyte anions, on the other hand, appears to effectively neutralize this electrostatic repulsion. The film thickness change in SAM2 was estimated to be 0.25 ± 0.05 nm using numerical simulation. The timescale of the redox-induced SPR changes was established by chronoamperometry and time-resolved SPR measurements, followed by fitting of the SPR response to a stretched exponential function. The time constants measured for the anodic process were 16 and 6 ms for SAM1 and SAM2 respectively, indicating that the SAM thickness changes are notably fast.  相似文献   

20.
Template stripping of Au films in ultrahigh vacuum (UHV) produces atomically flat and pristine surfaces that serve as substrates for highly ordered self-assembled monolayer (SAM) formation. Atomic resolution scanning tunneling microscopy of template-stripped (TS) Au stripped in UHV confirms that the stripping process produces a flat, predominantly 111 textured, atomically clean surface. Octanethiol SAMs vapor deposited in situ onto UHV TS Au show a c(4 x 2) superlattice with (square root 3 x square root 3) R30 degrees basic molecular structure having an ordered domain size up to 100 nm wide. These UHV results validate the TS Au surface as a simple, clean and high-quality surface preparation method for SAMs deposited from both vapor phase and solution phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号