首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
 通过对谐振腔腔镜失调灵敏度的计算,分析了声光调Q开关位置对调Q脉冲输出稳定性的影响。计算表明:Q开关放置在输出镜一侧会使脉冲序列更加稳定。在基模输出的条件下,获得了峰值功率为几十kW的调Q脉冲输出。采用BBO晶体对Nd:YAG激光器四倍频,获得了1.9 W的266 nm紫外激光输出。  相似文献   

2.
104 W内腔倍频全固态Nd:YAG绿光激光器   总被引:12,自引:0,他引:12  
报道了一台高功率内腔倍频全固态Nd:YAG绿光激光器,针对KTP晶体热效应和激光热稳定腔,采取了对KTP晶体进行低温冷却的优化措施,以便减少KTP晶体的热效应导致的相位失配,同时兼顾了Nd:YAG棒的热致双折射效应和KTP晶体热透镜效应,设计了热稳定谐振腔;实验中采用80个20 W激光二极管阵列侧面抽运Nd:YAG棒和Ⅱ类相位匹配KTP晶体(在27℃时相位匹配角为φ=23.6°;θ=90°,尺寸为7 mm×7 mm×10 mm)内腔倍频技术,谐振腔腔长为530 mm,KTP晶体的冷却温度为4.3 ℃,抽运电流为18.3 A时,实现平均功率达104 W、脉冲宽度为130 ns的532 nm激光输出;其重复频率为20.7 kHz.光-光转换效率为10.2%.  相似文献   

3.
四棒串接连续灯泵浦Nd:YAG大功率激光器   总被引:1,自引:1,他引:0       下载免费PDF全文
 报道了一种符合工业应用的四棒谐振腔连续Nd:YAG激光器。实验中采用对称放置方式四棒串接谐振腔得到2 105 W的平均功率输出,光束参数积24 mm·mrad,系统总光电转换效率达到3.5%。还对影响激光器工作的因素进行了理论分析。  相似文献   

4.
通过选用低掺杂浓度的Nd:YAG晶体棒、热近非稳腔优化设计、双棒串接热致双折射补偿技术以及双Q开关正交放置结构,在LD抽运功率1116W时,实现调Q准连续全固态Nd:YAG激光器1064nm输出,平均功率达258W,光束质量M2~15.5,重复频率为10kHz,脉冲宽度为64ns,峰值功率达0.4GW,光光转换效率达23.1%. 关键词: Nd:YAG激光器 准连续波 激光二极管抽运 固体激光器  相似文献   

5.
激光二极管侧抽运双棒串接准连续Nd:YAG高功率绿光激光器   总被引:2,自引:0,他引:2  
研制一台激光二极管(LD)侧面抽运双棒串接准连续Nd:YAG折叠腔高功率绿光激光器,理论分析了热致双折射效应对系统的影响,并对用石英旋转片补偿前后的情况进行模拟对比.在考虑了补偿后的情况下设计了热稳定谐振腔.实验中采用两个串接的由30个20 W的LD阵列侧面抽运的Nd: YAG棒和Ⅱ类临界相位匹配HGTR-KTP晶体.在抽运电流均为21.6 A,重复频率为27.2 kHz时.获得了最大平均输出功率为164 W.脉冲宽度为130 ns的532 nm绿光输出,光-光转换效率为13.7%,测得光束质量因子为M2x=9.52,M2x=9.86,不稳定度为2.3%.实验结果显示.经补偿后的激光系统能在宽的稳区范围内稳定运转.  相似文献   

6.
杨晓冬  侯新华 《光子学报》2012,41(10):1145-1148
对激光二极管端面泵浦Cr4+∶YAG被动调Q Nd∶YAG激光器输出特性进行了实验研究.实验研究发现,激光器输出功率及脉冲重复频率随谐振腔长度增大而增大.为解释这一实验现象,测量了泵浦光斑在激光晶体内尺寸,同时计算了激光晶体及Cr4+∶YAG晶体内的基模激光光斑半径随谐振腔长度变化.分析结果表明:激光晶体内泵浦光斑尺寸远小于激光晶体内基模光斑半径,腔模间交叠效率较低;当腔长增加时,激光晶体内的基模激光光斑减小,腔模间交叠效率增加,从而导致输出功率及脉冲重复频率随腔长增加而增加;另外,Cr4+∶YAG晶体内光斑半径也随谐振腔长度减小,引起Cr4+∶YAG晶体漂白时间缩短,导致脉冲重复频率随腔长增加而增加.  相似文献   

7.
报道了一台高功率内腔倍频全固态Nd∶YAG绿光激光器 ,针对KTP晶体热效应和激光热稳定腔 ,采取了对KTP晶体进行低温冷却的优化措施 ,以便减少KTP晶体的热效应导致的相位失配 ,同时兼顾了Nd∶YAG棒的热致双折射效应和KTP晶体热透镜效应 ,设计了热稳定谐振腔 ;实验中采用 80个 2 0W激光二极管阵列侧面抽运Nd∶YAG棒和Ⅱ类相位匹配KTP晶体 (在 2 7℃时相位匹配角为 =2 3.6° ;θ =90° ,尺寸为 7mm× 7mm× 10mm)内腔倍频技术 ,谐振腔腔长为 5 30mm ,KTP晶体的冷却温度为 4 .3℃ ,抽运电流为 18.3A时 ,实现平均功率达 10 4W、脉冲宽度为 130ns的 5 32nm激光输出 ;其重复频率为 2 0 .7kHz。光光转换效率为 10 .2 %。  相似文献   

8.
冯忠耀  李成荣  李修  汪俊  白晋涛 《光学学报》2008,28(8):1543-1546
研制一台激光二极管(LD)侧面抽运双棒串接准连续Nd∶YAG折叠腔高功率绿光激光器,理论分析了热致双折射效应对系统的影响,并对用石英旋转片补偿前后的情况进行模拟对比。在考虑了补偿后的情况下设计了热稳定谐振腔。实验中采用两个串接的由30个20 W的LD阵列侧面抽运的Nd∶YAG棒和Ⅱ类临界相位匹配HGTR-KTP晶体,在抽运电流均为21.6 A,重复频率为27.2 kHz时,获得了最大平均输出功率为164 W,脉冲宽度为130 ns的532 nm绿光输出,光-光转换效率为13.7%,测得光束质量因子为M2x=9.52, M2y=9.86,不稳定度为2.3%。实验结果显示,经补偿后的激光系统能在宽的稳区范围内稳定运转。  相似文献   

9.
647W灯泵浦大功率连续Nd:YAG激光器   总被引:2,自引:0,他引:2       下载免费PDF全文
 报道了一台灯泵浦大功率连续Nd:YAG激光器。对影响大功率固体激光器模块输出功率和光束质量的主要因素进行了理论分析,并提出提高激光器效率的措施:对聚光腔的形状、结构和材料以及冷却方式,泵浦灯的参数和材料,激光晶体的参数和镀膜进行优化设计,采用径向固定的谐振腔镜。该灯泵浦YAG晶体棒总体电光转换效率为4%,光束质量为22mm·mrad,输出功率647W。  相似文献   

10.
本文利用矩阵方法研究了由多根YAG:Nd棒串接的高功率连续激光器,这些激光棒的几何尺寸和热聚焦特性可以是不同的。通过电子计算机计算求得了描述激光器运转特性的参量(特别是振荡模体积匹配参量)随激光谐振腔几何结构和激光棒热焦距变化的函数关系。同时,对两根不同的YAG:Nd棒的串接振荡进行了实验研究,获得了与理论分析一致的结果。 关键词:  相似文献   

11.
The quartz rotator's effective birefringence compensation for ceramic Nd:YAG rods has been first demonstrated. Furthermore, a high output power continuous-wave laser is presented based on an optimized resonator made up of four Nd:YAG ceramic rods. By an appropriate design of the resonator, an output power of 108 W at 1064 nm is obtained. The corresponding optical-to-optical conversion efficiency is 16.8% and the slope efficiency is 28.1%. Meanwhile, the numerical analysis for output power is detailed.  相似文献   

12.
We report a stable high power and high beam quality diode-side-pumped cw green laser from intracavity frequency-doubled Nd: YAG laser with KTP. By using a L-shaped concave-convex resonator, designed with two Nd:YAG rods birefringence compensation, a large fundamental mode size in the laser crystal and a tight focus in the nonlinear crystal could be obtained simultaneously. The green laser delivers a maximum 532nm output power of 23.2 W. Under 532nm output power of 20.9 W, the beam quality factor is measured to be 4.1, and the fluctuation of the output power is less than 1.4% in an hour.  相似文献   

13.
A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr:YAG laser is demonstrated for the first time. In a concave-piano cavity, pulsed 912 nm laser performance is investigated using two kinds of Cr:YAG crystal with different unsaturated transmission (T U) of 95% and 90% at 912 nm as the saturable absorbers. When the T U = 90% Cr:YAG is used, as much as 2.6 W average output power for short pulsed 912 nm laser is achieved at an absorbed pump power of 34.0 W, corresponding to an optical efficiency of 7.6% and a slope efficiency of 20.3%. Moreover, 10.5 ns duration pulses and up to 2.3 kW peak power is obtained at the repetition rate around 81.6 kHz.  相似文献   

14.
针对Nd:YAG棒刻螺纹是否能改善激光器的输出,理论上分析了Nd:YAG晶体棒内热传导过程及影响其冷却效果的因素。给出了表面刻上螺纹后,Nd:YAG晶体棒表面积的变化结果和其对表面冷却换热方式的改变。对使用螺纹棒的激光器输出进行了实验研究,与普通棒的实验结果对比发现:用螺纹棒比用普通棒时平均功率大了23.2%,发散角小了3mrad。说明激光棒的表面刻槽可以提高冷却效果,有效地提高了激光器的输出。  相似文献   

15.
The refractive power of two flashlamp-pumped Nd:YAG rods was measured as being dependent on the output coupling of the resonator. With laser oscillation, the refractive power or thermal heat is decreased by up to 15% and a minimum occurs at a specific output coupling. The experimental results could be explained by a theoretical model assuming a non-radiative transition from the upper laser level to the ground state. The lifetime of this non-radiative transition decreases with increasing pumping power per pulse and, for pumping power higher than 100 kW, saturation at a value of 0.63 times the fluorescence lifetime occurs. The results indicate that the non-radiative process is caused by energy migration to flashlamp-induced transient quenching centres.  相似文献   

16.
We demonstrated an efficient and compact, diode-pumped passively Q-switched Nd:YVO4 laser operation at 1.064 μm wavelength with high repetition rate, using Cr4+:YAG as saturable absorber, formed with a simple flat–flat resonator. The maximum CW output power of 4.05 W was obtained at the incident pump power of 8 W. For Q-switched operation, the maximum average output power was measured to be 1.4 W with the corresponding repetition rate of 200 kHz, the pulse width of 60 ns when the initial transmission of Cr4+:YAG crystal was 85%. The shortest pulse width of 12 ns, the largest pulse energy of 36 μJ and the highest peak power of 3 kW were obtained when the Cr4+:YAG crystal with an initial transmission of 60% was used.  相似文献   

17.
A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO_4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO_4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with M_x~2= 4.82, M_y~2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO_4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.  相似文献   

18.
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We experimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configuration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号