首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《印度化学会志》2023,100(1):100854
The sorption enhanced reformer concept breaks the thermodynamic limits of steam methane reforming and water-gas shift reactions with selective CO2 removal to produce more H2. In this paper, we propose a dynamic kinetic model for sorption-enhanced steam reformers (SERs) integrated with biomass gasifiers. An analysis of operating conditions was conducted to examine high purity hydrogen production. The kinetic model was validated with published literature results at different reactor pressures (5-20 bar), steam/carbon ratios (2-5), and reactor temperatures (673K–1023K). This study shows that biomass gasifiers can be integrated with SER reactors to produce high purity H2.  相似文献   

2.
The electronic absorption bands of U(VI) fluoride carbonate and fluoride hydroxide complexes were assigned taking account of dissociation, hydration, association, and ligand exchange. The absorption in the range of 190–400 nm was found to be related to the formation of neutral and dissociated anionic U(VI) fluoride carbonate and fluoride hydroxide complexes and the polynuclear Na2n [(UO2–O–UO2)F4(OH)2n–1 ? kH2O] complex.  相似文献   

3.
Isothermal and non-isothermal decomposition of hydromagnesite 4 MgCO3 · Mg(OH)2 · 4 H2O was studied thermogravimetrically. Decarbonation was strongly influenced by the partial pressure of carbon dioxide. Decarbonation in an argon atmosphere proceeded via an amorphous lower carbonate to MgO. Decarbonation in a carbon dioxide atmosphere was interrupted at ~460–480°C. This interruption was explained by the formation of a metastable intermediate and the subsequent crystallization of MgCO3, both from the amorphous lower carbonate. This explanation was supported by DTA and power X-ray diffraction analysis of the quenched specimens.  相似文献   

4.
Carboxymethylated species were selectively synthesized from dimethyl carbonate (DMC) and bisphenol A (BPA) over TiO2/SBA-15. On the basis of catalyst characterization by means of XRD, FT-IR, HPLC and GC–MS, the relations between catalytic performance and catalyst properties were discussed. Si–O–Ti was active sites for reaction, and the interaction mode between Ti–O–Si and DMC was main factor to determine carboxymethylation and methylation. When DMC was attacked by Ti–O–Si on two oxygen atoms of CH3–O moiety, BPA attacked carbonyl carbon to form carboxymethylated products. If the interaction occurs through the oxygen of CO moiety, BPA attacked methyl carbon to form methylated products. Chemisorbed H2O over TiO2/SBA-15 made DMC to act as methylating agent. After chemisorbed H2O was removed, carboxymethylated species of two-methylcarbonate-ended-BPA (DmC(1)) and one-methylcarbonate-ended-BPA (MmC(1)) were selectively synthesized.  相似文献   

5.
Raman and infrared spectra have been recorded of water and heavy-water solutions of carbon dioxide, potassium bicarbonate, and potassium carbonate. The structures of the carbonate and bicarbonate ions and CO2 (aqueous solution) have been determined from a consideration of Raman and infrared data. The results reveal the presence of solvent effects in the carbonate and CO2 water solutions. No bands characteristic of H2CO3 were observed in the Raman spectrum of aqueous solutions of CO2.  相似文献   

6.
Anode-supported tubular solid oxide fuel cells (SOFCs) with Cu–CeO2–yttria-stabilized zirconia (YSZ) anode, YSZ electrolyte film, and silver cathode were fabricated. The cells were tested with 5 wt% Fe-loaded activated carbon and dry CO, respectively, and their performances were compared to verify the reaction mechanism of direct carbon SOFCs (DC-SOFCs). The corresponding current–voltage curves and impedance characteristics of the cells operating on these two different fuels were found to be almost the same at high temperatures, demonstrating the presumed mechanism that the anode reaction of a DC-SOFC is the electrochemical oxidation of CO, just as in a SOFC operated directly on CO. Some experimental evidences including the difference in open circuit voltage at different temperatures and the operating stability of the cells were analyzed in detail.  相似文献   

7.
Composition and properties were studied of products formed in treatment of solid Na2CO3 with aqueous solutions containing acetic and citric acids with mass fractions of 0.40–0.60 and 0.33–0.49, respectively, at a Na2CO3/H x An molar ratio of 2–6, where H x An = CH3COOH and H3(C6H5O7). It was found that the content of water in the systems under study and the strength of an acid affect the yield of the double salt of carbonic acid, Na2CO3·NaHCO3·2H2O and the composition of derivative proton-containing compounds. It is noted that sodium sesquicarbonate can be formed both by the crystallization mechanism and via a transformation of the primary structure of sodium carbonate. In the resulting powder-like products, water introduced with the acid solution is predominantly consumed for formation of crystal hydrates of carbonate-containing and derivative proton-containing compounds. The hygroscopic point of the resulting salt formulations was determined to be at a level of 70–75%. It was noted that sesquicarbonate-containing salt formulation formed in “dry” neutralization of sodium carbonate by acid solutions can be regarded as a builder for obtaining synthetic household detergents.  相似文献   

8.
Aqueous solutions of Me2Te(OH)2 and (CH2)4Te(OH)2 readily absorb carbon dioxide giving rise to the formation of the dialkyltelluroxane carbonates (Me2TeOTeMe2CO3)n ( 1 ) and HO(CH2)4TeOTe(CH2)4CO3Te(CH2)4OH·2H2O ( 2 ·2H2O), which were characterised by 13C MAS and 125Te MAS NMR spectroscopy as well as X‐ray crystallography. The spatial arrangement of the tellurium atoms is defined by C2O2 donor sets in the primary coordination sphere and one or two secondary Te···O contacts, which involve coordination of the carbonate moieties. In turn, the different Te–O coordination modes render a lack of symmetry to the carbonate moieties, which show significantly different C–O bond lengths, an important feature when contemplating the C–O bond activation in carbonates. The structural and spectroscopic parameters of 1 and 2 are discussed in comparison with other heavy p‐block element carbonates. In solution, electrolytic dissociation of 1 and 2 takes place.  相似文献   

9.
A complex of copper perchlorate coordinated with imidazole Cu(C3N2H4)4(ClO4)2 was synthesized and characterized by X-ray single-crystal diffraction. The complex is centrosymmetric in the monoclinic P2(1)/c space group. The low-temperature molar heat capacities and thermodynamic properties of the complex were studied with adiabatic calorimetry (AC). The thermodynamic functions [H TH 298.15] and [S TS 298.15] were derived in the temperature range from 80 to 370 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The mechanism of the decomposition was deduced to be the breaking up the two Cl–O bonds of the Cl–O–Cu and the Cu–N bonds of the imidazole rings in succession.  相似文献   

10.
The thermal behaviour of BaC2O4sd0.5H2O and BaCO3 in carbon dioxide and nitrogen atmospheres is investigated as part of a study about the thermal decomposition of barium trioxalatoaluminate. For this purpose thermogravimetry, differential thermal analysis, differential scanning calorimetry and high temperature X-ray diffraction were used. An infrared absorption spectrum of BaC2O4·0.5H2O was scanned at room temperature.At increasing temperature, in dry nitrogen, the hydrate water of BaC2O4· 0.5H2O is split off, followed by the oxalate decomposition. A part of the evolved carbon monoxide disproportionates, leaving carbon behind. At higher temperatures the latter reacts with barium carbonate, previously formed. Finally the residual solid barium carbonate decomposes into barium oxide and carbon dioxide.In dry carbon dioxide atmosphere an analogous dehydration occurs, followed by oxalate decomposition. Under these conditions the carbon formation is fully suppressed, and as a consequence no secondary reaction occurs. The barium carbonate decomposition is shifted to much higher temperatures, at a low rate in the solid phase, a strongly accelerated one at the onset of melting, and a moderated one when the melt is saturated with barium carbonate. The two phase transitions of BaCO3 are detectable in both atmospheres mentioned.  相似文献   

11.
A thermodynamic model for the system CaCO3-CaSO4·2H2O-NaCl-CO2-H2O has been developed for calculating calcium carbonate solubilities as a function of the carbon dioxide pressure under vapour-liquid-solid equilibrium conditions.The model has been tested against available data and its predictive capability compares favourably with that of other proposed models. Numerical values for model parameters are also given.The main feature of the model used in the present work is that the excess Gibbs energy is the sum of three terms: a Debye-Huckel contribution, a Born term as a correction for the change in dielectric constant and a short range interactions contribution calculated according to the non-random two-liquid (NRTL) equation.Our results may be useful in describing and interpreting the general characteristics of hydrothermal solutions with a view to their utilization for energy production.  相似文献   

12.
The thermodynamic equilibrium for the steam-carbon dioxide conversion of methane was studied by Gibbs energy minimization. The degree of coke formation, the content of methane and carbon dioxide in the synthesis gas, and the synthesis gas H2/CO ratio were plotted as functions of the molar ratios of CO2/CH4 and H2O/CH4 in the initial mixture at different temperatures and pressures. The regions of the optimum CH4/CO2/H2O molar ratios for steam-carbon dioxide conversion were discovered, with no coke formation taking place in these regions. The optimized CH4/CO2/H2O molar fractions characterized by the minimum content of methane and carbon dioxide in the synthesis gas were found for each region.  相似文献   

13.
The thermodynamic aspects of sublimation processes of three sulfonamides with the general structures C6H5–SO2NH–C6H4–R (R = 4-NO2) and 4-NH2–C6H4–SO2NH–C6H4–R (R = 4-NO2; 4-CN) were studied by investigating the temperature dependence of vapor pressure using the transpiration method. These data together with those obtained earlier for C6H5–SO2NH–C6H4–R (R = 4-Cl) and 4-NH2–C6H4–SO2NH–C6H4–R (R = 4-Cl; 4-OMe; 4-C2H5) were analyzed and compared. A correlation was derived between sublimation Gibbs free energies and the sum of H-bond acceptor factors of the molecules. Solubility processes of the compounds in water, phosphate buffer with pH 7.4 and n-octanol (as phases modeling various drug delivery pathways) were investigated and corresponding thermodynamic functions were calculated as well. Thermodynamic characteristics of the sulfonamides solvation were evaluated. Also in this case a correlation between solubility/solvation Gibbs free energy values and the sum of H-bond acceptor factors was observed. For the sulfonamides with various substituents at para-position the processes of transfer from one solvent (water or buffer) to n-octanol were studied by a diagram method combined with analysis of enthalpic and entropic terms. Distinguishing between enthalpy and entropy, as is possible through the present approach, leads to the insight that the contribution of these terms is different for different molecules (entropy- or enthalpy-determined). Thus, in contrast to the interpretation of only the Gibbs free energy of transfer (extensively used for pharmaceuticals in the form of the partition coefficient, log P), the analysis of thermodynamic functions of the transfer process provides additional mechanistic information. This may be important for further evaluation of the physiological distribution of drug molecules and may provide a better understanding of biopharmaceutical properties of drugs.  相似文献   

14.
The thermal rearrangement mechanisms of 2‐silylethylacetate H3SiCH2CH2OOCCH3 were investigated by ab initio molecular orbital theory for the first time. All structures of reactant, transition states, and products were located and fully optimized at the B3LYP/6‐311+G(d, p) levels, and harmonic vibrational frequencies for the involved stationary points on the potential energy surface were obtained. The reaction pathways were analyzed and confirmed by intrinsic reaction coordinate (IRC) calculations. Furthermore, atomic charges were determined by using the natural bond orbital (NBO) analysis. The calculational results show that H3SiCH2CH2OOCCH3 can rearrange thermally in two ways. One is [1,3] rearrangement (Reaction A), in which silyl group transfers from carbon to oxygen(in C? O? C) via a four‐membered ring transition state, forming silyl acetate and ethylene, the other way, [1,5] rearrangement (Reaction B), happens with transferring of silyl group from carbon to oxygen (in C?O) via a six‐membered ring transition state, forming the same products as in Reaction A. The energy barriers of the Reactions A and B were calculated to be 188.9 and 191.6 kJ/mol at the B3LYP/6‐311+G(d,p) levels, respectively. Changes in thermodynamic functions (ΔS, ΔH, and ΔG), equilibrium constant K(T), as well as preexponential factor A(T), and reaction rate constant k(T) in Eyring transition state theory were calculated over a temperature range of 200–1600 K, and then thermodynamic and kinetic properties of the reactions were analyzed. It can be suggested that Reactions A and B are noncompetitive, and both happen only at elevated temperature. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

15.
赵健  周伟  马建新 《物理化学学报》2001,30(7):1325-1331
与传统H2预处理方法相比,新型H2+CO2预处理方法(HCD)能显著提升Ni-Co双金属催化剂的沼气重整活性及抗积碳性能. 考察了HCD预处理操作条件对催化剂性能与结构的影响. 较好的HCD预处理操作条件是在催化剂经H2处理之后,再用175-200 mL·min-1的原料气CH4/CO2(比例为0:10)在780-800 ℃下还原0.5-1h. 在优化预处理操作条件下对催化剂进行了511 h的耐久性考察,并运用X射线衍射(XRD)、热重-差示扫描量热(TG-DSC)、透射电子显微镜(TEM)等手段对耐久性测试后的催化剂进行了表征. 在511 h 的稳定性实验内,CH4、CO2转化率,H2、CO选择性及H2/CO体积比分别高达96%、97%,98%、99%及0.98. 催化剂在测试期间的平均积碳速率仅为0.2 mg·g-1·h-1. 在该预处理操作参数下,催化剂拥有最好的综合性能和良好的耐久性.  相似文献   

16.
Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and EXAFS spectroscopy are used to study the composition and structure of SiCxNy:Fe films obtained by chemical vapor deposition (CVD) in the Fe–Si–C–N–H system from a mixture of hydrogen, ferrocene (C5H5)2Fe, and organosilicon compound 1,1,3,3,5,5–hexamethylcyclotrisilazane (HMCTS) C6H21N3Si3. The films are deposited under low pressures (LPCVD) at 1123–1273 K, and their phase composition at 300–1300 K is predicted using thermodynamic modeling. The obtained films are nanocomposites with amorphous matrices containing α-Fe crystallites and carbon clusters with a size of 5–10 nm.  相似文献   

17.

A combined chemical and biological process for the recycling of flue gas desulfurization (FGD) gypsum into calcium carbonate and elemental sulfur is demonstrated. In this process, a mixed culture of sulfate-reducing bacteria (SRB) utilizes inexpensive carbon sources, such as sewage digest or synthesis gas, to reduce FGD gypsum to hydrogen sulfide. The sulfide is then oxidized to elemental sulfur via reaction with ferric sulfate, and accumulating calcium ions are precipitated as calcium carbonate using carbon dioxide. Employing anaerobically digested municipal sewage sludge (AD-MSS) medium as a carbon source, SRBs in serum bottles demonstrated an FGD gypsum reduction rate of 8 mg/L/h (109 cells)-1. A chemostat with continuous addition of both AD-MSS media and gypsum exhibited sulfate reduction rates as high as 1.3 kg FGD gypsum/m3d. The increased biocatalyst density afforded by cell immobilization in a columnar reactor allowed a productivity of 152 mg SO4 -2/Lh or 6.6 kg FGD gypsum/m3d. Both reactors demonstrated 100% conversion of sulfate, with 75–100% recovery of elemental sulfur and chemical oxygen demand utilization as high as 70%. Calcium carbonate was recovered from the reactor effluent on precipitation using carbon dioxide. It was demonstrated that SRBs may also use synthesis gas (CO, H2, and CO2 in the reduction of gypsum, further decreasing process costs. The formation of two marketable products—elemental sulfur and calcium carbonate—from FGD gypsum sludge, combined with the use of a low-cost carbon source and further improvements in reactor design, promises to offer an attractive alternative to the landfilling of FGD gypsum.

  相似文献   

18.
The thermal decomposition of SEX in a nitrogen atmosphere was studied by coupled thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR), and by pyrolysis-gas chromatography-mass spectrometry (py-GC-MS). The TG curve exhibited two discrete mass losses of 45.8% and 17.8% respectively, at 200 and 257–364°C. The evolved gases identified as a result of the first mass loss were carbonyl sulfide (COS), ethanol (C2H5OH), ethanethiol (C2H5SH), carbon disulfide (CS2), diethyl sulfide ((C2H5)2S), diethyl carbonate ((C2H5O)2CO), diethyl disulfide ((C2H5)2S2), and carbonothioic acid, O, S, diethyl ester ((C2H5S)(C2H5O)CO). The gases identified as a result of the second mass loss were carbonyl sulfide, ethanethiol, and carbon disulfide. Hydrogen sulfide was detected in both mass losses by py-GC-MS, but not detected by FTIR. The solid residue was sodium hydrogen sulfide (NaSH).SEX was adsorbed onto activated carbon, and heated in nitrogen. Two discrete mass losses were still observed, but in the temperature ranges 100–186°C (7.8%) and 186–279°C (11.8%). Carbonyl sulfide and carbon disulfide were now the dominant gases evolved in each of the mass losses, and the other gaseous products were relatively minor. It was demonstrated that water adsorbed on the carbon hydrolysed the xanthate to cause the first mass loss, and any unhydrolysed material decomposed to give the second mass loss.Mr. N. G. Fisher would like to thank the A. J. Parker CRC for Hydrometallurgy for the provision of a PhD scholarship.  相似文献   

19.
When ammonium uranyl carbonate is decomposed, CO2, NH3 and H2O are evolved. Chemical analysis of the amorphous UO3 matix thus formed have shown that it contained besides UO3 also carbon, nitrogen and H2O. The amounts of these compounds varied with the atmosphere used during the reaction (H2, O2, CO2 and N2) and with the annealing time and temperature.  相似文献   

20.
Mechanisms for decomposition of 1- and 2-phenyltetralins were investigated using low resolution mass spectrometry and metastable ion techniques. Four primary decompositions were observed for 1-phenyltetralin radical cations: (1) the loss of C6H6 via a 1,4-elimination; (2) the elimination of ethene via competing losses from carbons 3 + 4 and carbons 2 + 3; (3) the loss of C8H8, probably through a stepwise Diels-Alder cycloreversion to expel styrene; and (4) the loss of methyl radical involving carbon 2 and possibly carbon 4. Three major decompositions were observed for 2-phenyltetralin radical cations: (1) the loss of C8H8, possibly through a Diels-Alder cycloreversion to expel styrene; (2) the loss of C6H6 via a 1,3 elimination; and (3) the loss of methyl radical from carbon 1. Various exchange reactions occur prior to these losses, but they proved to be incomplete even for metastable ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号