首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, a naturally occurring illite was characterized by using FT-IR and XRD technique to determine its surface functional groups and crystal structure. Sorption of 60Co(II) on illite as a function of contact time, pH, ionic strength, foreign ions, humic substances and temperature was studied under ambient condition using batch technique. The results indicated that the sorption of 60Co(II) on illite is strongly affected by pH values (2–9) and ionic strength. A positive effect of humic substances on 60Co(II) sorption was found at pH < 7.0, whereas a negative effect was observed at pH > 7.0. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on illite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 60Co(II) at three different temperatures of 298.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 60Co(II) on illite was endothermic and spontaneous.  相似文献   

2.
Removal of Zn(II) from aqueous solution by natural halloysite nanotubes   总被引:1,自引:0,他引:1  
Clay minerals have been widely used in wastewater disposal due to their strong sorption and complexation ability towards various environmental pollutants. In this study, the removal of Zn(II) from aqueous solution by natural halloysite nanotubes (HNTs) was studied as a function of various solution chemistry conditions such as contact time, pH, ionic strength, coexisting electrolyte ions and temperature under ambient conditions. The results indicated that the removal of Zn(II) by HNTs was strongly dependent on pH and ionic strength. Langmuir and Freundlich models were used to simulate the sorption isotherms of Zn(II) at three different temperatures of 293, 313 and 333 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the removal process of Zn(II) by HNTs was endothermic and spontaneous. At low pH, the removal of Zn(II) was dominated by outer-sphere surface complexation and/or cation exchange with Na+/H+ on HNT surfaces, whereas inner-sphere surface complexation was the main removal mechanism at high pH. From the experimental results, one can conclude that HNTs may have a good potentiality for the disposal of Zn(II)-bearing wastewaters.  相似文献   

3.
The kaolinite sample was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction, and was applied as adsorbent for the removal of radiocobalt ions from radioactive wastewater. The results demonstrated that the sorption of Co(II) was strongly dependent on pH and ionic strength at low pH values, and independent of pH and ionic strength at high pH values. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The sorption isotherms were well described by Langmuir, Freundlich and Dubinin–Radushkevich models. The thermodynamic parameters (i.e., ΔG°, ΔS°, ΔH°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on kaolinite was an endothermic and spontaneous process. The results of high sorption capacity of kaolinite suggested that the kaolinite sample was a suitable material for the preconcentration of Co(II) from large volumes of aqueous solutions and as backfill materials in nuclear waste management.  相似文献   

4.
Graphene oxide (GO) was synthesized using the modified Hummers method and characterized by XRD and FTIR. The sorption of 60Co(II) on GO as a function of contact time, pH, polyacrylic acid, ionic strength, temperature and solution concentration was studied by batch technique. The sorption kinetics indicated that the sorption of 60Co(II) on GO could be simulated by the pseudo-second-order model very well. The maximum sorption capacities of GO for 60Co(II) calculated from Langmuir model at pH 6.40 and T = 300 K was ~62.0 mg/g. The thermodynamic parameters from the temperature-dependent sorption isotherms indicated that the 60Co(II) sorption on GO was an endothermic and spontaneous process. The interaction mechanism between GO and Co(II) were outer-sphere surface complexation or ion exchange at pH <7, whereas the inner-sphere surface complexation was observed at pH 7–9 in terms of the analysis of XPS spectra.  相似文献   

5.
The sorption of Cd(II) from aqueous solution on MnO2 was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Cd(II) was strongly dependent on pH and ionic strength. At low pH, the sorption of Cd(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on MnO2 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (ΔG 0, ΔS 0, ΔH 0) calculated from the temperature dependent sorption isotherms suggested that the sorption of Cd(II) on MnO2 was an spontaneous and endothermic process.  相似文献   

6.
In this study, the removal of radionuclide 60Co(II) from wastewater by Ca-rectorite was studied as a function of various environmental parameters such as contact time, pH, ionic strength, coexisting electrolyte ions, humic substances (HS) and temperature under ambient conditions. The results indicated that the sorption of Co(II) on Ca-rectorite was strongly dependent on pH and ionic strength. The Langmuir and Freundlich models were used to simulate the sorption isotherms of Co(II) at three different temperatures of 298.15, 318.15 and 338.15?K. The thermodynamic parameters ( $ \Updelta H^{0} ,\,\Updelta S^{0} $ and $ \Updelta G^{0} $ ) calculated from the temperature-dependent sorption isotherms indicated that the sorption process of Co(II) on Ca-rectorite was spontaneous and endothermic. At low pH, the sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange with Ca+/H+ on Ca-rectorite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. From the experimental results, it is possible to conclude that Ca-rectorite has good potentialities for cost-effective disposal of radiocobalt bearing wastewaters.  相似文献   

7.
This paper examined the application of attapulgite as an adsorbent for the removal of Pb(II) from heavy metal-contaminated water under various conditions. The sorption results indicated that the sorption of Pb(II) on attapulgite was strongly dependent on ionic strength at pH < 7.0. Outer-sphere surface complexation or ion exchange may be the main sorption mechanism of Pb(II) on attapulgite at low pH values. No drastic difference of Pb(II) sorption was observed at pH 7.0–10.0, and the sorption at pH > 10.0 was mainly dominated by inner-sphere surface complexation. The sorption of Pb(II) on attapulgite was affected by foreign ions in solution at pH < 7.0, and was not affected by foreign ions at pH > 7.0. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) were evaluated from the temperature-dependent sorption isotherms, and the results indicated that the sorption process of Pb(II) on attapulgite was spontaneous and endothermic in nature.  相似文献   

8.
The sorption of radiocadmium on Ca-montmorillonite as a function of contact time, pH, ionic strength, foreign ions, humic acid (HA) and fulvic acid (FA) was studied using batch technique. The results demonstrated that the sorption of Cd(II) was dependent on ionic strength at pH < 9, and was independent of ionic strength at pH > 9. Outer-sphere surface complexation and/or ion exchange were the main mechanism of Cd(II) sorption on Ca-montmorillonite at low pH, whereas the sorption at high pH was mainly dominated via inner-sphere surface complexation. The sorption of Cd(II) on Ca-montmorillonite was dependent on foreign ions at low pH values, but was independent of foreign ions at high pH values. A positive effect of HA/FA on Cd(II) sorption was found at low pH values, whereas a negative effect was observed at high pH values. The thermodynamic parameters (i.e., ??H 0, ??S 0, ??G 0) were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption process of Cd(II) on Ca-montmorillonite was spontaneous and endothermic.  相似文献   

9.
The fate and transport of toxic metal ions and radionuclides in the environment is generally controlled by sorption reactions. The removal of 60Co(II) from wastewaters by MnO2 was studied as a function of various environmental parameters such as shaking time, pH, ionic strength, foreign ions, and humic substances under ambient conditions. The results indicated that the sorption of 60Co(II) on MnO2 was strongly dependent on pH and ionic strength. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on MnO2 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The presence of HA/FA enhances 60Co(II) sorption at low pH values, whereas reduces 60Co(II) sorption at high pH values. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 60Co(II) at three different temperatures of 298.15, 318.15 and 338.15 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 60Co(II) on MnO2 was endothermic and spontaneous.  相似文献   

10.
Application of NKF-6 zeolite for the removal of U(VI) from aqueous solution   总被引:1,自引:0,他引:1  
To better understand the application of NKF-6 zeolite as an adsorbent for the removal of U(VI) from radionuclides and heavy metal ions polluted water, herein, NKF-6 zeolite was employed to remove U(VI) at different experimental conditions. The influence of solid/liquid ratio, contact time, pH, ionic strength, humic substances and temperature on sorption of U(VI) to NKF-6 zeolite was investigated using batch technique under ambient conditions. The experimental results demonstrated that the sorption of U(VI) on NKF-6 zeolite was strongly dependent on pH. The sorption property of U(VI) was influenced by ionic strength at pH < 7.0, whereas was independent of ionic strength at pH > 7.0. The presence of fulvic acid or humic acid promoted the sorption of U(VI) on NKF-6 zeolite at low pH values while restrained the sorption at high pH values. The thermodynamic parameters (i.e., ΔS 0, ΔH 0, and ΔG 0) calculated from the temperature-dependent sorption isotherms demonstrated that the sorption process of U(VI) on NKF-6 zeolite was endothermic and spontaneous. At low pH values, the sorption of U(VI) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on NKF-6 zeolite surfaces, while inner-sphere surface complexation was the main sorption mechanism at high pH values. From the experimental results, one can conclude that NKF-6 zeolite can be used as a potential adsorbent for the preconcentration and solidification of U(VI) from large volumes of aqueous solutions.  相似文献   

11.
The interaction of U(VI) with Na-attapulgite was studied by using batch technique at different experimental conditions. The effect of contact time, solid content, pH, ionic strength and temperature on the sorption of U(VI) onto Na-attapulgite in the presence and absence of humic acid was also investigated. The results showed that the sorption of U(VI) on Na-attapulgite achieved sorption equilibrium quickly. Sorption of U(VI) on Na-attapulgite increased quickly with increasing pH at pH < 6.5, and then decreased with pH increasing at pH > 6.5. The sorption curves were shifted to left in low NaClO4 solutions as compared those in high NaClO4 solutions. The sorption was strongly dependent on pH and ionic strength. The sorption was dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The thermodynamic parameters (i.e., ΔH 0, ΔS 0, and ΔG 0) for the sorption of U(VI) were calculated from the temperature dependent sorption isotherms, and the results suggested that the sorption reaction was an endothermic and spontaneous process. The Na-attapulgite is a suitable material in the removal and preconcentration of U(VI) from large volumes of aqueous solutions in nuclear waste management.  相似文献   

12.
In this article, a series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, solid content, pH, ionic strength, foreign ions, temperature and coexisting humic acid on the sorption behavior radionuclide 60Co(II) on illite. The results indicated that the sorption of Co(II) was strongly dependent on pH, ionic strength and temperature. At low pH, the sorption was dominated by outer-sphere surface complexation and ion exchange on illite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic data (∆G 0, ∆S 0, ∆H 0) were calculated from the temperature dependent sorption isotherms and the results suggested that the sorption process of Co(II) on illite was an endothermic and spontaneous process. The sorption test revealed that the illite can be as a cost-effective adsorbent suitable for pre-concentration of Co(II) from large volumes of aqueous solutions.  相似文献   

13.
A novel adsorbent, TiO2/eggshell composite, was synthesized by sol–gel method, and characterized by XRD and FTIR. The removal of 60Co(II) from aqueous solution by TiO2/eggshell was studied as a function of contact time, pH, ionic strength, foreign ions, humic substances and temperature. The results indicated that the sorption of 60Co(II) on TiO2/eggshell was strongly dependent on pH and ionic strength. The Langmuir, Freundlich and D-R models were applied to simulate the sorption of 60Co(II) at temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 60Co(II) on TiO2/eggshell was endothermic and spontaneous. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation or ion exchange, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. TiO2/eggshell composites have good potentialities for cost-effective disposal of 60Co(II) bearing wastewaters.  相似文献   

14.
The development of nuclear power releases large amounts of radionuclides into the natural environment. Herein, the sorption of radionuclide 63Ni on bentonite from Gaomiaozi county (Inner Mongolia, China) at different experimental conditions such as pH, contact time, ionic strength, foreign cations and anions, and temperatures were investigated by using batch technique. The results indicated that the sorption of 63Ni on the bentonite was quickly at first contact time and then increased slowly with increasing contact time. The sorption of 63Ni was strongly dependent on ionic strength at low pH values and independent of ionic strength at high pH values. The sorption of 63Ni on bentonite was mainly dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The Langmuir, Freundlich, and D–R models were applied to simulate the sorption isotherms of 63Ni at three different temperatures, and the thermodynamic parameters (i.e., ΔH°, ΔS° and ΔG°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of 63Ni on bentonite was an endothermic and spontaneous process. Experimental results indicate that the bentonite is a suitable material for the preconcentration and solidification of 63Ni from large volume of solutions in radionickel pollution cleanup.  相似文献   

15.
The sorption of Co(II) from aqueous solution on Na-rectorite was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Co(II) was strongly dependent on pH. At low pH the sorption was dominated by outer-sphere surface complexation or ion exchange, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (∆G 0, ∆S 0, ∆H 0) were calculated from the temperature dependent sorption isotherms and the results suggested that the sorption process of Co(II) on Na-rectorite was spontaneous and endothermic. Experimental results indicate that Na-rectorite is a suitable adsorbent for preconcentration and solidification of Co(II) from large volumes of aqueous solutions.  相似文献   

16.
The sorption of Co(II) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid (FA) and temperature under ambient conditions was studied. The kinetic of Co(II) sorption on Na-attapulgite was described well by pseudo-second-order model. The sorption of Co(II) on Na-attapulgite was strongly dependent on pH and ionic strength. The sorption of Co(II) was mainly dominated by outer-sphere surface complexation and/or ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The presence of FA did not affect Co(II) sorption obviously at pH <7, and a negative effect was observed at pH >7. The Langmuir and Freundlich models were used to simulate the sorption data at different temperatures, and the results indicated that the Langmuir model simulated the data better than the Freundlich isotherm model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on Na-attapulgite was an endothermic and spontaneous process. The results suggest that the attapulgite sample is a suitable material in the preconcentration and solidification of radiocobalt from large volumes of aqueous solutions.  相似文献   

17.
Paecilomyces catenlannulatus (P. catenlannulatus), a kind of important pathogenic fungi of forest pests, can be regarded as an excellent material to retard the fate and transport of radionuclides. The effect of environmental factors (i.e., pH, ionic strength, temperature and solution concentration) on the uptake of 60Co by P. catenlannulatus was investigated by batch technique. The results showed that the uptake of 60Co by P. catenlannulatus was independent of pH at pH < 5.0, whereas the enhanced uptake of 60Co was observed with increasing pH from 5.0 to 8.0, then remained the high-level uptake at pH > 8.0 due to occurrence of precipitates. It is found that 60Co uptake significantly decreased with increasing ionic strength at low pH, whereas little change was observed at high pH. The pH dependence adsorption indicates that the interaction mechanism between 60Co and P. catenlannulatus is ion exchange at low pH and surface complexation at high pH conditions, respectively. Compared to Freundlich model, the adsorption isotherms can be fitted by Langmuir model very well. The thermodynamic data calculated from the temperature adsorption isotherms indicated that the uptake process of 60Co by P. catenlannulatus was an endothermic and spontaneous process. This paper focused on potential application of P. catenlannulatus as suitable bio-materials for the preconcentration and removal of radionuclides from aqueous solutions in environmental pollution management.  相似文献   

18.
To better understand the application of kaolinite as an adsorbent for the decontamination of Ni(II) from radionuclide contaminated aqueous systems, herein, the sorption behavior of radionuclide 63Ni(II) on kaolinite as a function of contacting time, pH, coexistent electrolyte ions, adsorbent concentration, fulvic acid and humic acid was investigated using batch technique. At low pH values, ion exchange and/or outer-sphere surface complexation was the main mechanism of Ni(II) sorption on kaolinite, whereas, the sorption of Ni(II) was dominated by inner-sphere surface complexation at high pH values. The presence of different electrolyte ions can enhance or inhibit the sorption of Ni(II) on kaolinite to some extent. The Langmuir and Freundlich models were used to simulate the sorption isotherms of Ni(II) at three different temperatures of 288, 313 and 338 K. The thermodynamic parameters (i.e., ΔS°, ΔH°, and ΔG°) calculated from the temperature-dependent sorption isotherms indicated that the sorption reaction of Ni(II) on kaolinite was endothermic and spontaneous. The findings in this present study demonstrates that the kaolinite can be used as a cost-effective adsorbent for the solidification and pre-concentration of Ni(II) from large volumes of aqueous systems.  相似文献   

19.
In this work, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR to determine its chemical functional groups. A series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA) and temperature on the sorption behavior of HAP towards radionuclide 109Cd(II). The results indicated that the sorption of 109Cd(II) on HAP was strongly dependent on pH and ionic strength. A positive effect of FA on 109Cd(II) sorption was found at pH <7.0, whereas a negative effect was observed at pH >7.0. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 298.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH0, ΔS0 and ΔG0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 109Cd(II) on HAP was spontaneous and endothermic. At low pH, the sorption of 109Cd(II) was dominated by outer-sphere surface complexation and ion exchange on HAP surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. From the experimental results, it is possible to conclude that HAP has good potentialities for cost-effective treatments of 109Cd(II)-contaminated wastewaters.  相似文献   

20.
Herein, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR and XRD to determine its chemical functional groups and micro-structure. The removal of cobalt from aqueous solution to HAP was studied by batch technique as a function of various environmental parameters such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA), and temperature under ambient conditions. The results indicated that the sorption of Co(II) on HAP was strongly dependent on pH and ionic strength. The presence of FA enhanced the sorption of Co(II) on HAP at low pH, whereas reduced Co(II) sorption on HAP at high pH. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature dependent sorption isotherms indicated that the sorption process of Co(II) on HAP was spontaneous and endothermic. The sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The results suggest that the HAP is a suitable material in the preconcentration and solidification of Co(II) from large volumes of aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号